Fang Chao, Lee Katie K, Nietupski Raymond, Bates Robert H, Fernandez-Menendez Raquel, Lopez-Roman Eva Maria, Guijarro-Lopez Laura, Yin Yunxing, Peng Zuozhong, Gomez James E, Fisher Stewart, Barros-Aguirre David, Hubbard Brian K, Serrano-Wu Michael H, Hung Deborah T
The Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, USA.
The Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, USA; Department of Molecular Biology and Center for Integrative and Computational Biology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA.
Bioorg Med Chem Lett. 2018 Dec 1;28(22):3529-3533. doi: 10.1016/j.bmcl.2018.09.037. Epub 2018 Sep 29.
Previous work established a coumarin scaffold as a starting point for inhibition of Mycobacterium tuberculosis (Mtb) FadD32 enzymatic activity. After further profiling of the coumarin inhibitor 4 revealed chemical instability, we discovered that a quinoline ring circumvented this instability and had the advantage of offering additional substitution vectors to further optimize. Ensuing SAR studies gave rise to quinoline-2-carboxamides with potent anti-tubercular activity. Further optimization of ADME/PK properties culminated in 21b that exhibited compelling in vivo efficacy in a mouse model of Mtb infection.
先前的研究确定香豆素支架是抑制结核分枝杆菌(Mtb)FadD32酶活性的起点。在对香豆素抑制剂4进行进一步分析后发现其化学稳定性较差,我们发现喹啉环可避免这种不稳定性,并且具有提供额外取代载体以进一步优化的优势。随后的构效关系(SAR)研究产生了具有强效抗结核活性的喹啉-2-甲酰胺。对吸收、分布、代谢和排泄/药代动力学(ADME/PK)特性的进一步优化最终得到了21b,其在Mtb感染小鼠模型中表现出令人信服的体内疗效。