Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA.
Eur Urol. 2019 Jun;75(6):901-907. doi: 10.1016/j.eururo.2018.09.050. Epub 2018 Oct 11.
Clinical registries provide physicians with a means for making data-driven decisions but few opportunities exist for patients to interact with registry data to help make decisions.
We sought to develop a web-based system that uses a prostate cancer (CaP) registry to provide newly diagnosed men with a platform to view predicted treatment decisions based on patients with similar characteristics.
DESIGN, SETTING, AND PARTICIPANTS: The Michigan Urological Surgery Improvement Collaborative (MUSIC) is a quality improvement consortium of urology practices that maintains a prospective registry of men with CaP. We used registry data from 45 MUSIC urology practices from 2015 to 2017 to develop and validate a random forest machine learning model. After fitting the random forest model to a derivation cohort consisting of a random two-thirds sample of patients after stratifying by practice location, we evaluated the model performance in a validation cohort consisting of the remaining one-third of patients using a multiclass area under the curve (AUC) measure and calibration plots.
We identified 7543 men diagnosed with CaP, of whom 45% underwent radical prostatectomy, 30% surveillance, 17% radiation therapy, 5.6% androgen deprivation, and 1.8% watchful waiting. The personalized prediction for patients in the validation cohort was highly accurate (AUC 0.81).
Using clinical registry data and machine learning methods, we created a web-based platform for patients that generates accurate predictions for most CaP treatments.
We have developed and tested a tool to help men newly diagnosed with prostate cancer to view predicted treatment decisions based on similar patients from our registry. We have made this tool available online for patients to use.
临床注册为医生提供了一种做出数据驱动决策的方法,但患者很少有机会与注册数据交互以帮助做出决策。
我们旨在开发一个基于网络的系统,该系统使用前列腺癌(CaP)注册系统为新诊断的男性提供一个平台,根据具有相似特征的患者查看预测的治疗决策。
设计、设置和参与者:密歇根泌尿科手术改进协作(MUSIC)是一个泌尿科实践的质量改进联盟,该联盟维护着一个患有 CaP 的男性前瞻性注册系统。我们使用来自 2015 年至 2017 年的 45 个 MUSIC 泌尿科实践的注册数据来开发和验证随机森林机器学习模型。在通过实践位置分层对患者进行随机三分之二样本的推导队列中拟合随机森林模型之后,我们使用多类曲线下面积(AUC)度量和校准图在验证队列中评估了剩余三分之一患者的模型性能。
我们确定了 7543 名被诊断患有 CaP 的男性,其中 45%接受了根治性前列腺切除术,30%接受了监测,17%接受了放射治疗,5.6%接受了雄激素剥夺治疗,1.8%接受了观察等待。验证队列中患者的个性化预测非常准确(AUC 0.81)。
使用临床注册数据和机器学习方法,我们为患者创建了一个基于网络的平台,可以为大多数 CaP 治疗生成准确的预测。
我们已经开发并测试了一种工具,可帮助新诊断为前列腺癌的男性根据我们的注册中心的类似患者查看预测的治疗决策。我们已经将该工具在线提供给患者使用。