Suppr超能文献

基于疾病特异性增强的低剂量 CT 自动肺气肿检测的人工智能模型

AI-Driven Model for Automatic Emphysema Detection in Low-Dose Computed Tomography Using Disease-Specific Augmentation.

机构信息

Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

DASH, Machine Learning Lab, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

出版信息

J Digit Imaging. 2022 Jun;35(3):538-550. doi: 10.1007/s10278-022-00599-7. Epub 2022 Feb 18.

Abstract

The objective of this study is to evaluate the feasibility of a disease-specific deep learning (DL) model based on minimum intensity projection (minIP) for automated emphysema detection in low-dose computed tomography (LDCT) scans. LDCT scans of 240 individuals from a population-based cohort in the Netherlands (ImaLife study, mean age ± SD = 57 ± 6 years) were retrospectively chosen for training and internal validation of the DL model. For independent testing, LDCT scans of 125 individuals from a lung cancer screening cohort in the USA (NLST study, mean age ± SD = 64 ± 5 years) were used. Dichotomous emphysema diagnosis based on radiologists' annotation was used to develop the model. The automated model included minIP processing (slab thickness range: 1 mm to 11 mm), classification, and detection maps generation. The data-split for the pipeline evaluation involved class-balanced and imbalanced settings. The proposed DL pipeline showed the highest performance (area under receiver operating characteristics curve) for 11 mm slab thickness in both the balanced (ImaLife = 0.90 ± 0.05) and the imbalanced dataset (NLST = 0.77 ± 0.06). For ImaLife subcohort, the variation in minIP slab thickness from 1 to 11 mm increased the DL model's sensitivity from 75 to 88% and decreased the number of false-negative predictions from 10 to 5. The minIP-based DL model can automatically detect emphysema in LDCTs. The performance of thicker minIP slabs was better than that of thinner slabs. LDCT can be leveraged for emphysema detection by applying disease specific augmentation.

摘要

本研究旨在评估基于最小强度投影(minIP)的疾病特异性深度学习(DL)模型在低剂量计算机断层扫描(LDCT)扫描中自动检测肺气肿的可行性。本研究回顾性选择了来自荷兰基于人群队列的 ImaLife 研究(240 名参与者,平均年龄 ± SD = 57 ± 6 岁)的 LDCT 扫描用于训练和内部验证 DL 模型。为了进行独立测试,使用了来自美国肺癌筛查队列的 NLST 研究(125 名参与者,平均年龄 ± SD = 64 ± 5 岁)的 LDCT 扫描。基于放射科医生注释的二分类肺气肿诊断用于开发模型。自动化模型包括 minIP 处理(板厚范围:1mm 至 11mm)、分类和检测图生成。该模型的管道评估采用了数据分割,包括平衡和不平衡的设置。在所提出的 DL 管道中,在平衡数据集(ImaLife = 0.90 ± 0.05)和不平衡数据集(NLST = 0.77 ± 0.06)中,11mm 板厚的表现最佳(接受者操作特征曲线下面积)。对于 ImaLife 子队列,minIP 板厚从 1mm 变化到 11mm,提高了 DL 模型的敏感性从 75%提高到 88%,减少了假阴性预测的数量从 10 个减少到 5 个。基于 minIP 的 DL 模型可以自动检测 LDCT 中的肺气肿。较厚的 minIP 板的性能优于较薄的板。通过应用特定疾病的增强,可以利用 LDCT 进行肺气肿检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14cd/9156637/258317bf3029/10278_2022_599_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验