Yegorov Ivan, Mairet Francis, de Jong Hidde, Gouzé Jean-Luc
North Dakota State University, Fargo, ND, USA.
Ifremer PBA, Nantes, France.
J Math Biol. 2019 Mar;78(4):985-1032. doi: 10.1007/s00285-018-1299-6. Epub 2018 Oct 17.
Microorganisms have evolved complex strategies for controlling the distribution of available resources over cellular functions. Biotechnology aims at interfering with these strategies, so as to optimize the production of metabolites and other compounds of interest, by (re)engineering the underlying regulatory networks of the cell. The resulting reallocation of resources can be described by simple so-called self-replicator models and the maximization of the synthesis of a product of interest formulated as a dynamic optimal control problem. Motivated by recent experimental work, we are specifically interested in the maximization of metabolite production in cases where growth can be switched off through an external control signal. We study various optimal control problems for the corresponding self-replicator models by means of a combination of analytical and computational techniques. We show that the optimal solutions for biomass maximization and product maximization are very similar in the case of unlimited nutrient supply, but diverge when nutrients are limited. Moreover, external growth control overrides natural feedback growth control and leads to an optimal scheme consisting of a first phase of growth maximization followed by a second phase of product maximization. This two-phase scheme agrees with strategies that have been proposed in metabolic engineering. More generally, our work shows the potential of optimal control theory for better understanding and improving biotechnological production processes.
微生物已经进化出复杂的策略来控制可用资源在细胞功能之间的分配。生物技术旨在通过(重新)设计细胞的基础调控网络来干扰这些策略,从而优化代谢产物和其他目标化合物的生产。资源的重新分配可以用简单的所谓自复制模型来描述,将目标产物合成的最大化表述为一个动态最优控制问题。受近期实验工作的启发,我们特别关注在通过外部控制信号可以关闭生长的情况下代谢产物产量的最大化。我们通过分析和计算技术相结合的方法研究了相应自复制模型的各种最优控制问题。我们表明,在营养供应不受限的情况下,生物量最大化和产物最大化的最优解非常相似,但在营养受限的情况下会有所不同。此外,外部生长控制超越了自然反馈生长控制,导致了一种最优方案,即首先是生长最大化阶段,随后是产物最大化阶段。这种两阶段方案与代谢工程中提出的策略一致。更一般地说,我们的工作展示了最优控制理论在更好地理解和改进生物技术生产过程方面的潜力。