Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich CH-8093, Switzerland.
Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland.
Sci Adv. 2022 Dec 23;8(51):eade0072. doi: 10.1126/sciadv.ade0072.
With increasing computing demands, serial processing in von Neumann architectures built with zeroth-order complexity digital circuits is saturating in computational capacity and power, entailing research into alternative paradigms. Brain-inspired systems built with memristors are attractive owing to their large parallelism, low energy consumption, and high error tolerance. However, most demonstrations have thus far only mimicked primitive lower-order biological complexities using devices with first-order dynamics. Memristors with higher-order complexities are predicted to solve problems that would otherwise require increasingly elaborate circuits, but no generic design rules exist. Here, we present second-order dynamics in halide perovskite memristive diodes (memdiodes) that enable Bienenstock-Cooper-Munro learning rules capturing both timing- and rate-based plasticity. A triplet spike timing-dependent plasticity scheme exploiting ion migration, back diffusion, and modulable Schottky barriers establishes general design rules for realizing higher-order memristors. This higher order enables complex binocular orientation selectivity in neural networks exploiting the intrinsic physics of the devices, without the need for complicated circuitry.
随着计算需求的不断增加,基于零阶复杂度数字电路的冯·诺依曼架构中的串行处理在计算能力和功耗方面已经达到饱和,因此需要研究替代范式。受忆阻器启发的系统因其具有大规模并行性、低能耗和高容错性而备受关注。然而,迄今为止,大多数演示仅使用具有一阶动力学的器件模拟了原始的低阶生物复杂性。具有更高阶复杂性的忆阻器有望解决那些原本需要越来越复杂的电路才能解决的问题,但目前还没有通用的设计规则。在这里,我们在卤化物钙钛矿忆阻二极管(memdiodes)中展示了二阶动力学,这些忆阻器可以实现包含定时和基于速率的可塑性的 Bienenstock-Cooper-Munro 学习规则。利用离子迁移、反向扩散和可调节肖特基势垒的三重尖峰定时相关可塑性方案,为实现更高阶忆阻器建立了通用的设计规则。这种更高的阶数使神经网络能够利用器件的固有物理特性实现复杂的双目方向选择性,而无需复杂的电路。