IEEE Trans Med Imaging. 2019 Apr;38(4):932-944. doi: 10.1109/TMI.2018.2875829. Epub 2018 Oct 12.
Due to peripheral nerve stimulation, the magnetic particle imaging (MPI) method is limited in the maximum applicable excitation-field amplitude. This in turn leads to a limitation of the size of the covered field of view (FoV) to few millimeters. In order to still capture a larger FoV, MPI is capable to rapidly acquire volumes in a multi-patch fashion. To this end, the small excitation volume is shifted through space using the magnetic focus fields. Recently, it has been shown that the individual patches are preferably reconstructed in a joint fashion by solving a single linear system of equations taking the coupling between individual patches into account. While this improves the image quality, it is computationally and memory demanding since the size of the linear system increases in the best case quadratically with the number of patches. In this paper, we will develop a reconstruction algorithm for MPI multi-patch data exploiting the sparsity of the joint system matrix. A highly efficient implicit matrix format allows for rapid on-the-fly calculations of linear algebra operations involving the system matrix. Using this approach, the computational effort can be reduced to a linear dependence on the number of used patches. The algorithm is validated on 3-D multi-patch phantom data sets and shown to reconstruct large data sets with 15 patches in less than 22 s.
由于外周神经刺激,磁粒子成像 (MPI) 方法在最大可用激励场幅度方面受到限制。这反过来又将覆盖视场 (FoV) 的大小限制在几毫米以内。为了仍然捕获更大的 FoV,MPI 能够以多补丁的方式快速采集体积。为此,使用磁焦点场在空间中移动小的激励体积。最近,已经表明,通过求解考虑到各个补丁之间的耦合的单个线性方程组,最好以联合方式重建各个补丁。虽然这提高了图像质量,但它在计算和内存方面要求很高,因为在线性系统的大小在最佳情况下会随补丁数量的平方增加。在本文中,我们将开发一种用于 MPI 多补丁数据的重建算法,利用联合系统矩阵的稀疏性。高效的隐式矩阵格式允许快速在线计算涉及系统矩阵的线性代数操作。使用这种方法,可以将计算工作量减少到与使用的补丁数量呈线性关系。该算法在 3-D 多补丁体数据集上进行了验证,并证明可以在不到 22 秒的时间内重建具有 15 个补丁的大型数据集。
IEEE Trans Med Imaging. 2018-10-12
Med Phys. 2019-2-22
IEEE Trans Med Imaging. 2020-5
IEEE Trans Med Imaging. 2018-5
IEEE Trans Med Imaging. 2019-1-31
IEEE Trans Biomed Eng. 2016-11
IEEE Trans Med Imaging. 2016-6-13
Phys Med Biol. 2015-4-21
IEEE Trans Med Imaging. 2019-2-11
IEEE Trans Med Imaging. 2025-5
Vis Comput Ind Biomed Art. 2022-10-1
Diagnostics (Basel). 2021-4-26