文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于单系统矩阵复用的多贴片数据高效磁共振粒子成像联合重建。

Efficient Joint Image Reconstruction of Multi-Patch Data Reusing a Single System Matrix in Magnetic Particle Imaging.

出版信息

IEEE Trans Med Imaging. 2019 Apr;38(4):932-944. doi: 10.1109/TMI.2018.2875829. Epub 2018 Oct 12.


DOI:10.1109/TMI.2018.2875829
PMID:30334751
Abstract

Due to peripheral nerve stimulation, the magnetic particle imaging (MPI) method is limited in the maximum applicable excitation-field amplitude. This in turn leads to a limitation of the size of the covered field of view (FoV) to few millimeters. In order to still capture a larger FoV, MPI is capable to rapidly acquire volumes in a multi-patch fashion. To this end, the small excitation volume is shifted through space using the magnetic focus fields. Recently, it has been shown that the individual patches are preferably reconstructed in a joint fashion by solving a single linear system of equations taking the coupling between individual patches into account. While this improves the image quality, it is computationally and memory demanding since the size of the linear system increases in the best case quadratically with the number of patches. In this paper, we will develop a reconstruction algorithm for MPI multi-patch data exploiting the sparsity of the joint system matrix. A highly efficient implicit matrix format allows for rapid on-the-fly calculations of linear algebra operations involving the system matrix. Using this approach, the computational effort can be reduced to a linear dependence on the number of used patches. The algorithm is validated on 3-D multi-patch phantom data sets and shown to reconstruct large data sets with 15 patches in less than 22 s.

摘要

由于外周神经刺激,磁粒子成像 (MPI) 方法在最大可用激励场幅度方面受到限制。这反过来又将覆盖视场 (FoV) 的大小限制在几毫米以内。为了仍然捕获更大的 FoV,MPI 能够以多补丁的方式快速采集体积。为此,使用磁焦点场在空间中移动小的激励体积。最近,已经表明,通过求解考虑到各个补丁之间的耦合的单个线性方程组,最好以联合方式重建各个补丁。虽然这提高了图像质量,但它在计算和内存方面要求很高,因为在线性系统的大小在最佳情况下会随补丁数量的平方增加。在本文中,我们将开发一种用于 MPI 多补丁数据的重建算法,利用联合系统矩阵的稀疏性。高效的隐式矩阵格式允许快速在线计算涉及系统矩阵的线性代数操作。使用这种方法,可以将计算工作量减少到与使用的补丁数量呈线性关系。该算法在 3-D 多补丁体数据集上进行了验证,并证明可以在不到 22 秒的时间内重建具有 15 个补丁的大型数据集。

相似文献

[1]
Efficient Joint Image Reconstruction of Multi-Patch Data Reusing a Single System Matrix in Magnetic Particle Imaging.

IEEE Trans Med Imaging. 2018-10-12

[2]
Trajectory analysis for field free line magnetic particle imaging.

Med Phys. 2019-2-22

[3]
Generalized MPI Multi-Patch Reconstruction Using Clusters of Similar System Matrices.

IEEE Trans Med Imaging. 2020-5

[4]
Joint Reconstruction of Tracer Distribution and Background in Magnetic Particle Imaging.

IEEE Trans Med Imaging. 2018-5

[5]
Fast System Calibration With Coded Calibration Scenes for Magnetic Particle Imaging.

IEEE Trans Med Imaging. 2019-1-31

[6]
Steering of Magnetic Devices With a Magnetic Particle Imaging System.

IEEE Trans Biomed Eng. 2016-11

[7]
MPIGAN: An end-to-end deep based generative framework for high-resolution magnetic particle imaging reconstruction.

Med Phys. 2024-8

[8]
Non-Equispaced System Matrix Acquisition for Magnetic Particle Imaging Based on Lissajous Node Points.

IEEE Trans Med Imaging. 2016-6-13

[9]
Joint reconstruction of non-overlapping magnetic particle imaging focus-field data.

Phys Med Biol. 2015-4-21

[10]
Pulsed Excitation in Magnetic Particle Imaging.

IEEE Trans Med Imaging. 2019-2-11

引用本文的文献

[1]
A Physics-Based Computational Forward Model for Efficient Image Reconstruction in Magnetic Particle Imaging.

IEEE Trans Med Imaging. 2025-5

[2]
Recent developments of the reconstruction in magnetic particle imaging.

Vis Comput Ind Biomed Art. 2022-10-1

[3]
The Reconstruction of Magnetic Particle Imaging: Current Approaches Based on the System Matrix.

Diagnostics (Basel). 2021-4-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索