磁粒子成像重建技术的最新进展。

Recent developments of the reconstruction in magnetic particle imaging.

作者信息

Yin Lin, Li Wei, Du Yang, Wang Kun, Liu Zhenyu, Hui Hui, Tian Jie

机构信息

CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.

Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China.

出版信息

Vis Comput Ind Biomed Art. 2022 Oct 1;5(1):24. doi: 10.1186/s42492-022-00120-5.

Abstract

Magnetic particle imaging (MPI) is an emerging molecular imaging technique with high sensitivity and temporal-spatial resolution. Image reconstruction is an important research topic in MPI, which converts an induced voltage signal into the image of superparamagnetic iron oxide particles concentration distribution. MPI reconstruction primarily involves system matrix- and x-space-based methods. In this review, we provide a detailed overview of the research status and future research trends of these two methods. In addition, we review the application of deep learning methods in MPI reconstruction and the current open sources of MPI. Finally, research opinions on MPI reconstruction are presented. We hope this review promotes the use of MPI in clinical applications.

摘要

磁粒子成像(MPI)是一种新兴的分子成像技术,具有高灵敏度和时空分辨率。图像重建是MPI中的一个重要研究课题,它将感应电压信号转换为超顺磁性氧化铁颗粒浓度分布的图像。MPI重建主要涉及基于系统矩阵和x空间的方法。在本综述中,我们详细概述了这两种方法的研究现状和未来研究趋势。此外,我们回顾了深度学习方法在MPI重建中的应用以及MPI的当前开源情况。最后,给出了关于MPI重建的研究观点。我们希望本综述能促进MPI在临床应用中的使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cc6/9525566/2bc02cf3ae00/42492_2022_120_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索