文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于系统矩阵的磁粒子成像重建:当前方法

The Reconstruction of Magnetic Particle Imaging: Current Approaches Based on the System Matrix.

作者信息

Chen Xiaojun, Jiang Zhenqi, Han Xiao, Wang Xiaolin, Tang Xiaoying

机构信息

School of Life Science, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Diagnostics (Basel). 2021 Apr 26;11(5):773. doi: 10.3390/diagnostics11050773.


DOI:10.3390/diagnostics11050773
PMID:33925830
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8146641/
Abstract

Magnetic particle imaging (MPI) is a novel non-invasive molecular imaging technology that images the distribution of superparamagnetic iron oxide nanoparticles (SPIONs). It is not affected by imaging depth, with high sensitivity, high resolution, and no radiation. The MPI reconstruction with high precision and high quality is of enormous practical importance, and many studies have been conducted to improve the reconstruction accuracy and quality. MPI reconstruction based on the system matrix (SM) is an important part of MPI reconstruction. In this review, the principle of MPI, current construction methods of SM and the theory of SM-based MPI are discussed. For SM-based approaches, MPI reconstruction mainly has the following problems: the reconstruction problem is an inverse and ill-posed problem, the complex background signals seriously affect the reconstruction results, the field of view cannot cover the entire object, and the available 3D datasets are of relatively large volume. In this review, we compared and grouped different studies on the above issues, including SM-based MPI reconstruction based on the state-of-the-art Tikhonov regularization, SM-based MPI reconstruction based on the improved methods, SM-based MPI reconstruction methods to subtract the background signal, SM-based MPI reconstruction approaches to expand the spatial coverage, and matrix transformations to accelerate SM-based MPI reconstruction. In addition, the current phantoms and performance indicators used for SM-based reconstruction are listed. Finally, certain research suggestions for MPI reconstruction are proposed, expecting that this review will provide a certain reference for researchers in MPI reconstruction and will promote the future applications of MPI in clinical medicine.

摘要

磁粒子成像(MPI)是一种新型的非侵入性分子成像技术,用于对超顺磁性氧化铁纳米颗粒(SPIONs)的分布进行成像。它不受成像深度的影响,具有高灵敏度、高分辨率且无辐射。高精度和高质量的MPI重建具有巨大的实际意义,并且已经开展了许多研究来提高重建的准确性和质量。基于系统矩阵(SM)的MPI重建是MPI重建的重要组成部分。在本综述中,将讨论MPI的原理、SM的当前构建方法以及基于SM的MPI理论。对于基于SM的方法,MPI重建主要存在以下问题:重建问题是一个逆问题且不适定,复杂的背景信号严重影响重建结果,视野无法覆盖整个物体,并且可用的3D数据集体积相对较大。在本综述中,我们对上述问题的不同研究进行了比较和归类,包括基于最先进的蒂霍诺夫正则化的基于SM的MPI重建、基于改进方法的基于SM的MPI重建、减去背景信号的基于SM的MPI重建方法、扩大空间覆盖范围的基于SM的MPI重建方法以及加速基于SM的MPI重建的矩阵变换。此外,还列出了当前用于基于SM重建的体模和性能指标。最后,对MPI重建提出了一定的研究建议,期望本综述能为MPI重建领域的研究人员提供一定的参考,并推动MPI在临床医学中的未来应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f1/8146641/a5ddb0076c74/diagnostics-11-00773-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f1/8146641/e1f7ff409a83/diagnostics-11-00773-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f1/8146641/56243525a9ac/diagnostics-11-00773-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f1/8146641/f84092b3ce5e/diagnostics-11-00773-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f1/8146641/74d0544f1e03/diagnostics-11-00773-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f1/8146641/a5ddb0076c74/diagnostics-11-00773-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f1/8146641/e1f7ff409a83/diagnostics-11-00773-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f1/8146641/56243525a9ac/diagnostics-11-00773-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f1/8146641/f84092b3ce5e/diagnostics-11-00773-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f1/8146641/74d0544f1e03/diagnostics-11-00773-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f1/8146641/a5ddb0076c74/diagnostics-11-00773-g005.jpg

相似文献

[1]
The Reconstruction of Magnetic Particle Imaging: Current Approaches Based on the System Matrix.

Diagnostics (Basel). 2021-4-26

[2]
MPIGAN: An end-to-end deep based generative framework for high-resolution magnetic particle imaging reconstruction.

Med Phys. 2024-8

[3]
A greedy regularized block Kaczmarz method for accelerating reconstruction in magnetic particle imaging.

Phys Med Biol. 2024-7-16

[4]
System matrix recovery based on deep image prior in magnetic particle imaging.

Phys Med Biol. 2023-1-20

[5]
Magnetic particle imaging: current developments and future directions.

Int J Nanomedicine. 2015-4-22

[6]
Trajectory analysis for field free line magnetic particle imaging.

Med Phys. 2019-2-22

[7]
Recent developments of the reconstruction in magnetic particle imaging.

Vis Comput Ind Biomed Art. 2022-10-1

[8]
DEQ-MPI: A Deep Equilibrium Reconstruction With Learned Consistency for Magnetic Particle Imaging.

IEEE Trans Med Imaging. 2024-1

[9]
A systematic 3-D magnetic particle imaging simulation model for quantitative analysis of reconstruction image quality.

Comput Methods Programs Biomed. 2024-7

[10]
Simultaneous correction of sensitivity and spatial resolution in projection-based magnetic particle imaging.

Med Phys. 2020-4

引用本文的文献

[1]
Precision and efficiency in skin cancer segmentation through a dual encoder deep learning model.

Sci Rep. 2025-2-9

[2]
Machine Learning and Deep Learning Applications in Magnetic Particle Imaging.

J Magn Reson Imaging. 2025-1

[3]
Recent Metal Nanotheranostics for Cancer Diagnosis and Therapy: A Review.

Diagnostics (Basel). 2023-2-22

[4]
Recent developments of the reconstruction in magnetic particle imaging.

Vis Comput Ind Biomed Art. 2022-10-1

本文引用的文献

[1]
4D deep image prior: dynamic PET image denoising using an unsupervised four-dimensional branch convolutional neural network.

Phys Med Biol. 2021-1-14

[2]
Efficient hybrid 3D system calibration for magnetic particle imaging systems using a dedicated device.

Sci Rep. 2020-10-28

[3]
Characterization of noise and background signals in a magnetic particle imaging system.

Phys Med Biol. 2020-11-27

[4]
The Applications of Magnetic Particle Imaging: From Cell to Body.

Diagnostics (Basel). 2020-10-9

[5]
Tomographic Field Free Line Magnetic Particle Imaging With an Open-Sided Scanner Configuration.

IEEE Trans Med Imaging. 2020-12

[6]
Partial FOV Center Imaging (PCI): A Robust X-Space Image Reconstruction for Magnetic Particle Imaging.

IEEE Trans Med Imaging. 2020-11

[7]
Computational strategies for the preconditioned conjugate gradient method applied to ssSNPBLUP, with an application to a multivariate maternal model.

Genet Sel Evol. 2020-5-13

[8]
Artificially Engineered Cubic Iron Oxide Nanoparticle as a High-Performance Magnetic Particle Imaging Tracer for Stem Cell Tracking.

ACS Nano. 2020-2-5

[9]
Prostate Cancer Detection using Deep Convolutional Neural Networks.

Sci Rep. 2019-12-20

[10]
Accelerating iterative coordinate descent using a stored system matrix.

Med Phys. 2019-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索