Suppr超能文献

基于运动预测匹配和事件处理的自动细胞跟踪。

Automated Cell Tracking Using Motion Prediction-Based Matching and Event Handling.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2020 May-Jun;17(3):959-971. doi: 10.1109/TCBB.2018.2875684. Epub 2018 Oct 12.

Abstract

Automated cell segmentation and tracking enables the quantification of static and dynamic cell characteristics and is significant for disease diagnosis, treatment, drug development, and other biomedical applications. This paper introduces a method for fully automated cell tracking, lineage construction, and quantification. Cell detection is performed in the joint spatio-temporal domain by a motion diffusion-based Partial Differential Equation (PDE) combined with energy minimizing active contours. In the tracking stage, we adopt a variational joint local-global optical flow technique to determine the motion vector field. We utilize the predicted cell motion jointly with spatial cell features to define a maximum likelihood criterion to find inter-frame cell correspondences assuming Markov dependency. We formulate cell tracking and cell event detection as a graph partitioning problem. We propose a solution obtained by minimization of a global cost function defined over the set of all cell tracks. We construct a cell lineage tree that represents the cell tracks and cell events. Finally, we compute morphological, motility, and diffusivity measures and validate cell tracking against manually generated reference standards. The automated tracking method applied to reference segmentation maps produces an average tracking accuracy score ( TRA) of 99 percent, and the fully automated segmentation and tracking system produces an average TRA of 89 percent.

摘要

自动细胞分割和跟踪可实现静态和动态细胞特征的量化,对疾病诊断、治疗、药物开发和其他生物医学应用具有重要意义。本文介绍了一种全自动细胞跟踪、谱系构建和量化的方法。通过基于运动扩散的偏微分方程(PDE)与能量最小化主动轮廓相结合,在时空联合域中进行细胞检测。在跟踪阶段,我们采用变分联合局部-全局光流技术来确定运动矢量场。我们利用预测的细胞运动以及空间细胞特征来定义最大似然准则,以在假设 Markov 依赖性的情况下找到帧间细胞对应关系。我们将细胞跟踪和细胞事件检测表述为图划分问题。我们提出了一种通过最小化定义在所有细胞轨迹集合上的全局成本函数来获得的解决方案。我们构建了一个表示细胞轨迹和细胞事件的细胞谱系树。最后,我们计算形态、运动性和扩散性度量,并针对手动生成的参考标准验证细胞跟踪。应用于参考分割图的自动跟踪方法产生了 99%的平均跟踪准确性得分(TRA),而全自动分割和跟踪系统产生了 89%的平均 TRA。

相似文献

1
Automated Cell Tracking Using Motion Prediction-Based Matching and Event Handling.
IEEE/ACM Trans Comput Biol Bioinform. 2020 May-Jun;17(3):959-971. doi: 10.1109/TCBB.2018.2875684. Epub 2018 Oct 12.
2
Cell segmentation and tracking using CNN-based distance predictions and a graph-based matching strategy.
PLoS One. 2020 Dec 8;15(12):e0243219. doi: 10.1371/journal.pone.0243219. eCollection 2020.
3
Context aware spatio-temporal cell tracking in densely packed multilayer tissues.
Med Image Anal. 2015 Jan;19(1):149-63. doi: 10.1016/j.media.2014.09.008. Epub 2014 Oct 6.
4
Joint level-set and spatio-temporal motion detection for cell segmentation.
BMC Med Genomics. 2016 Aug 10;9 Suppl 2(Suppl 2):49. doi: 10.1186/s12920-016-0206-5.
5
Cell tracking using phase-adaptive shape prior.
J Microsc. 2013 Nov;252(2):149-58. doi: 10.1111/jmi.12078. Epub 2013 Aug 20.
6
Data acceptance for automated leukocyte tracking through segmentation of spatiotemporal images.
IEEE Trans Biomed Eng. 2005 Oct;52(10):1702-12. doi: 10.1109/TBME.2005.855718.
7
Tracking biological cells in time-lapse microscopy: an adaptive technique combining motion and topological features.
IEEE Trans Biomed Eng. 2011 Jun;58(6):1637-47. doi: 10.1109/TBME.2011.2109001. Epub 2011 Jan 28.
9
Global linking of cell tracks using the Viterbi algorithm.
IEEE Trans Med Imaging. 2015 Apr;34(4):911-29. doi: 10.1109/TMI.2014.2370951. Epub 2014 Nov 14.
10
Multiple nuclei tracking using integer programming for quantitative cancer cell cycle analysis.
IEEE Trans Med Imaging. 2010 Jan;29(1):96-105. doi: 10.1109/TMI.2009.2027813. Epub 2009 Jul 28.

本文引用的文献

1
Deep Learning in Microscopy Image Analysis: A Survey.
IEEE Trans Neural Netw Learn Syst. 2018 Oct;29(10):4550-4568. doi: 10.1109/TNNLS.2017.2766168. Epub 2017 Nov 22.
2
An objective comparison of cell-tracking algorithms.
Nat Methods. 2017 Dec;14(12):1141-1152. doi: 10.1038/nmeth.4473. Epub 2017 Oct 30.
3
A survey on deep learning in medical image analysis.
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
4
Imaging and tracking HIV viruses in human cervical mucus.
J Biomed Opt. 2016 Sep 1;21(9):96001. doi: 10.1117/1.JBO.21.9.096001.
5
Joint level-set and spatio-temporal motion detection for cell segmentation.
BMC Med Genomics. 2016 Aug 10;9 Suppl 2(Suppl 2):49. doi: 10.1186/s12920-016-0206-5.
6
Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review.
IEEE Rev Biomed Eng. 2016;9:234-63. doi: 10.1109/RBME.2016.2515127. Epub 2016 Jan 6.
7
Quantitative comparison of multiframe data association techniques for particle tracking in time-lapse fluorescence microscopy.
Med Image Anal. 2015 Aug;24(1):163-189. doi: 10.1016/j.media.2015.06.006. Epub 2015 Jun 27.
8
Global linking of cell tracks using the Viterbi algorithm.
IEEE Trans Med Imaging. 2015 Apr;34(4):911-29. doi: 10.1109/TMI.2014.2370951. Epub 2014 Nov 14.
9
Fluorescence live cell imaging.
Methods Cell Biol. 2014;123:77-94. doi: 10.1016/B978-0-12-420138-5.00005-7.
10
A novel framework for cellular tracking and mitosis detection in dense phase contrast microscopy images.
IEEE J Biomed Health Inform. 2013 May;17(3):642-53. doi: 10.1109/titb.2012.2228663.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验