Suppr超能文献

用于细胞分割的联合水平集和时空运动检测

Joint level-set and spatio-temporal motion detection for cell segmentation.

作者信息

Boukari Fatima, Makrogiannis Sokratis

机构信息

Department of Physics and Engineering, Delaware State Univ., 1200 N. DuPont Hwy, Dover, 19901, DE, USA.

出版信息

BMC Med Genomics. 2016 Aug 10;9 Suppl 2(Suppl 2):49. doi: 10.1186/s12920-016-0206-5.

Abstract

BACKGROUND

Cell segmentation is a critical step for quantification and monitoring of cell cycle progression, cell migration, and growth control to investigate cellular immune response, embryonic development, tumorigenesis, and drug effects on live cells in time-lapse microscopy images.

METHODS

In this study, we propose a joint spatio-temporal diffusion and region-based level-set optimization approach for moving cell segmentation. Moving regions are initially detected in each set of three consecutive sequence images by numerically solving a system of coupled spatio-temporal partial differential equations. In order to standardize intensities of each frame, we apply a histogram transformation approach to match the pixel intensities of each processed frame with an intensity distribution model learned from all frames of the sequence during the training stage. After the spatio-temporal diffusion stage is completed, we compute the edge map by nonparametric density estimation using Parzen kernels. This process is followed by watershed-based segmentation and moving cell detection. We use this result as an initial level-set function to evolve the cell boundaries, refine the delineation, and optimize the final segmentation result.

RESULTS

We applied this method to several datasets of fluorescence microscopy images with varying levels of difficulty with respect to cell density, resolution, contrast, and signal-to-noise ratio. We compared the results with those produced by Chan and Vese segmentation, a temporally linked level-set technique, and nonlinear diffusion-based segmentation. We validated all segmentation techniques against reference masks provided by the international Cell Tracking Challenge consortium. The proposed approach delineated cells with an average Dice similarity coefficient of 89 % over a variety of simulated and real fluorescent image sequences. It yielded average improvements of 11 % in segmentation accuracy compared to both strictly spatial and temporally linked Chan-Vese techniques, and 4 % compared to the nonlinear spatio-temporal diffusion method.

CONCLUSIONS

Despite the wide variation in cell shape, density, mitotic events, and image quality among the datasets, our proposed method produced promising segmentation results. These results indicate the efficiency and robustness of this method especially for mitotic events and low SNR imaging, enabling the application of subsequent quantification tasks.

摘要

背景

细胞分割是定量分析和监测细胞周期进程、细胞迁移及生长控制的关键步骤,有助于研究细胞免疫反应、胚胎发育、肿瘤发生以及延时显微镜图像中药物对活细胞的影响。

方法

在本研究中,我们提出一种用于移动细胞分割的联合时空扩散和基于区域的水平集优化方法。通过数值求解耦合时空偏微分方程组,在每组连续的三幅序列图像中初步检测移动区域。为了标准化每一帧的强度,我们应用直方图变换方法,将每个处理帧的像素强度与在训练阶段从序列的所有帧中学习到的强度分布模型进行匹配。在时空扩散阶段完成后,我们使用Parzen核通过非参数密度估计计算边缘图。接着进行基于分水岭的分割和移动细胞检测。我们将此结果用作初始水平集函数来演化细胞边界、细化轮廓并优化最终分割结果。

结果

我们将该方法应用于几个在细胞密度、分辨率、对比度和信噪比方面具有不同难度水平的荧光显微镜图像数据集。我们将结果与Chan和Vese分割法、一种时间关联的水平集技术以及基于非线性扩散的分割法所产生的结果进行了比较。我们根据国际细胞追踪挑战赛联盟提供的参考掩码对所有分割技术进行了验证。所提出的方法在各种模拟和真实荧光图像序列上以平均89%的骰子相似系数描绘细胞。与严格的空间和时间关联的Chan-Vese技术相比,其分割精度平均提高了11%,与非线性时空扩散方法相比提高了4%。

结论

尽管数据集中细胞形状、密度、有丝分裂事件和图像质量差异很大,但我们提出的方法产生了有前景的分割结果。这些结果表明该方法的效率和鲁棒性,特别是对于有丝分裂事件和低信噪比成像,能够应用后续的定量任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c602/4980781/aae2b8290b4d/12920_2016_206_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验