Suppr超能文献

使用整数规划进行多核跟踪以进行定量癌细胞周期分析。

Multiple nuclei tracking using integer programming for quantitative cancer cell cycle analysis.

机构信息

Department of Information Science, School of Mathematical Sciences, and LMAM, Peking University, Beijing 100871, China.

出版信息

IEEE Trans Med Imaging. 2010 Jan;29(1):96-105. doi: 10.1109/TMI.2009.2027813. Epub 2009 Jul 28.

Abstract

Automated cell segmentation and tracking are critical for quantitative analysis of cell cycle behavior using time-lapse fluorescence microscopy. However, the complex, dynamic cell cycle behavior poses new challenges to the existing image segmentation and tracking methods. This paper presents a fully automated tracking method for quantitative cell cycle analysis. In the proposed tracking method, we introduce a neighboring graph to characterize the spatial distribution of neighboring nuclei, and a novel dissimilarity measure is designed based on the spatial distribution, nuclei morphological appearance, migration, and intensity information. Then, we employ the integer programming and division matching strategy, together with the novel dissimilarity measure, to track cell nuclei. We applied this new tracking method for the tracking of HeLa cancer cells over several cell cycles, and the validation results showed that the high accuracy for segmentation and tracking at 99.5% and 90.0%, respectively. The tracking method has been implemented in the cell-cycle analysis software package, DCELLIQ, which is freely available.

摘要

自动细胞分割和跟踪对于使用延时荧光显微镜进行细胞周期行为的定量分析至关重要。然而,复杂、动态的细胞周期行为给现有的图像分割和跟踪方法带来了新的挑战。本文提出了一种用于定量细胞周期分析的全自动跟踪方法。在提出的跟踪方法中,我们引入了邻接图来描述相邻细胞核的空间分布,并且基于空间分布、核形态外观、迁移和强度信息设计了一种新的不相似性度量。然后,我们采用整数规划和划分匹配策略,结合新的不相似性度量来跟踪细胞核。我们将这种新的跟踪方法应用于对 HeLa 癌细胞进行多个细胞周期的跟踪,验证结果表明,分割和跟踪的准确率分别高达 99.5%和 90.0%。该跟踪方法已在免费的细胞周期分析软件包 DCELLIQ 中实现。

相似文献

1
Multiple nuclei tracking using integer programming for quantitative cancer cell cycle analysis.
IEEE Trans Med Imaging. 2010 Jan;29(1):96-105. doi: 10.1109/TMI.2009.2027813. Epub 2009 Jul 28.
2
Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy.
IEEE Trans Biomed Eng. 2006 Apr;53(4):762-6. doi: 10.1109/TBME.2006.870201.
3
A novel cell segmentation method and cell phase identification using Markov model.
IEEE Trans Inf Technol Biomed. 2009 Mar;13(2):152-7. doi: 10.1109/TITB.2008.2007098.
4
A robust algorithm for segmenting and tracking clustered cells in time-lapse fluorescent microscopy.
IEEE J Biomed Health Inform. 2013 Jul;17(4):862-9. doi: 10.1109/JBHI.2013.2262233.
6
Features for cells and nuclei classification.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6601-4. doi: 10.1109/IEMBS.2011.6091628.
7
Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos.
Development. 2012 Nov;139(22):4271-9. doi: 10.1242/dev.086256. Epub 2012 Oct 10.
8
Cell nuclei segmentation in fluorescence microscopy images using inter- and intra-region discriminative information.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:6087-90. doi: 10.1109/EMBC.2013.6610941.
9
Overlapping nuclei segmentation based on Bayesian networks and stepwise merging strategy.
J Microsc. 2009 Aug;235(2):188-98. doi: 10.1111/j.1365-2818.2009.03199.x.
10
Context based mixture model for cell phase identification in automated fluorescence microscopy.
BMC Bioinformatics. 2007 Jan 30;8:32. doi: 10.1186/1471-2105-8-32.

引用本文的文献

1
A machine learning approach for single cell interphase cell cycle staging.
Sci Rep. 2021 Sep 29;11(1):19278. doi: 10.1038/s41598-021-98489-5.
2
A graph-based cell tracking algorithm with few manually tunable parameters and automated segmentation error correction.
PLoS One. 2021 Sep 7;16(9):e0249257. doi: 10.1371/journal.pone.0249257. eCollection 2021.
4
Fully unsupervised symmetry-based mitosis detection in time-lapse cell microscopy.
Bioinformatics. 2019 Aug 1;35(15):2644-2653. doi: 10.1093/bioinformatics/bty1034.
5
Automated Cell Tracking Using Motion Prediction-Based Matching and Event Handling.
IEEE/ACM Trans Comput Biol Bioinform. 2020 May-Jun;17(3):959-971. doi: 10.1109/TCBB.2018.2875684. Epub 2018 Oct 12.
6
Sharing and reusing cell image data.
Mol Biol Cell. 2018 Jun 1;29(11):1274-1280. doi: 10.1091/mbc.E17-10-0606.
7
Akt regulation of glycolysis mediates bioenergetic stability in epithelial cells.
Elife. 2017 Dec 14;6:e27293. doi: 10.7554/eLife.27293.
8
Trajectory energy minimization for cell growth tracking and genealogy analysis.
R Soc Open Sci. 2017 May 24;4(5):170207. doi: 10.1098/rsos.170207. eCollection 2017 May.
9
Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision.
Biomed Res Int. 2016;2016:9406259. doi: 10.1155/2016/9406259. Epub 2016 Oct 26.
10
Robust Individual-Cell/Object Tracking via PCANet Deep Network in Biomedicine and Computer Vision.
Biomed Res Int. 2016;2016:8182416. doi: 10.1155/2016/8182416. Epub 2016 Aug 25.

本文引用的文献

1
Snakes, shapes, and gradient vector flow.
IEEE Trans Image Process. 1998;7(3):359-69. doi: 10.1109/83.661186.
2
High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles.
BMC Biotechnol. 2007 Oct 9;7:66. doi: 10.1186/1472-6750-7-66.
3
Image-based multivariate profiling of drug responses from single cells.
Nat Methods. 2007 May;4(5):445-53. doi: 10.1038/nmeth1032. Epub 2007 Apr 1.
4
Therapeutic anticancer efficacy of a synthetic diazonamide analog in the absence of overt toxicity.
Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2074-9. doi: 10.1073/pnas.0611340104. Epub 2007 Feb 7.
5
Context based mixture model for cell phase identification in automated fluorescence microscopy.
BMC Bioinformatics. 2007 Jan 30;8:32. doi: 10.1186/1471-2105-8-32.
6
High-throughput analysis of multispectral images of breast cancer tissue.
IEEE Trans Image Process. 2006 Aug;15(8):2259-68. doi: 10.1109/tip.2006.875205.
7
Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy.
IEEE Trans Biomed Eng. 2006 Apr;53(4):762-6. doi: 10.1109/TBME.2006.870201.
9
Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes.
IEEE Trans Med Imaging. 2005 Jun;24(6):697-711. doi: 10.1109/TMI.2005.846851.
10
Level set analysis for leukocyte detection and tracking.
IEEE Trans Image Process. 2004 Apr;13(4):562-72. doi: 10.1109/tip.2003.819858.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验