Suppr超能文献

抗阻运动后引发骨骼肌肥大的刺激和传感器。

Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise.

机构信息

Department of Sport and Exercise Sciences, Technical University of Munich , Munich , Germany.

CUNY Lehman College, Bronx, New York.

出版信息

J Appl Physiol (1985). 2019 Jan 1;126(1):30-43. doi: 10.1152/japplphysiol.00685.2018. Epub 2018 Oct 18.

Abstract

One of the most striking adaptations to exercise is the skeletal muscle hypertrophy that occurs in response to resistance exercise. A large body of work shows that a mammalian target of rapamycin complex 1 (mTORC1)-mediated increase of muscle protein synthesis is the key, but not sole, mechanism by which resistance exercise causes muscle hypertrophy. While much of the hypertrophy signaling cascade has been identified, the initiating, resistance exercise-induced and hypertrophy-stimulating stimuli have remained elusive. For the purpose of this review, we define an initiating, resistance exercise-induced and hypertrophy-stimulating signal as "hypertrophy stimulus," and the sensor of such a signal as "hypertrophy sensor." In this review we discuss our current knowledge of specific mechanical stimuli, damage/injury-associated and metabolic stress-associated triggers, as potential hypertrophy stimuli. Mechanical signals are the prime hypertrophy stimuli candidates, and a filamin-C-BAG3-dependent regulation of mTORC1, Hippo, and autophagy signaling is a plausible albeit still incompletely characterized hypertrophy sensor. Other candidate mechanosensing mechanisms are nuclear deformation-initiated signaling or several mechanisms related to costameres, which are the functional equivalents of focal adhesions in other cells. While exercise-induced muscle damage is probably not essential for hypertrophy, it is still unclear whether and how such muscle damage could augment a hypertrophic response. Interventions that combine blood flow restriction and especially low load resistance exercise suggest that resistance exercise-regulated metabolites could be hypertrophy stimuli, but this is based on indirect evidence and metabolite candidates are poorly characterized.

摘要

运动适应的最显著特征之一是抗阻运动引起的骨骼肌肥大。大量研究表明,哺乳动物雷帕霉素靶蛋白复合物 1(mTORC1)介导的肌肉蛋白合成增加是抗阻运动引起肌肉肥大的关键机制,但不是唯一机制。虽然已经确定了大部分肥大信号级联反应,但引发、抗阻运动诱导和肥大刺激的因素仍然难以捉摸。为了进行本次综述,我们将引发、抗阻运动诱导和肥大刺激的信号定义为“肥大信号”,将这种信号的传感器定义为“肥大传感器”。在本次综述中,我们讨论了特定机械刺激、损伤/损伤相关和代谢应激相关触发因素作为潜在肥大信号的最新知识。机械信号是主要的肥大信号候选物,而细丝蛋白 C-BAG3 依赖性的 mTORC1、 Hippo 和自噬信号的调节是一种合理的、但仍不完全描述的肥大传感器。其他候选的机械传感机制是核变形起始信号或与质膜下细胞骨架相关的几种机制,质膜下细胞骨架是其他细胞中粘着斑的功能等价物。虽然运动引起的肌肉损伤可能不是肥大所必需的,但目前尚不清楚肌肉损伤是否以及如何增强肥大反应。结合血流限制和特别是低负荷抗阻运动的干预措施表明,抗阻运动调节的代谢物可能是肥大信号,但这是基于间接证据,且代谢物候选物的特征描述较差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验