Suppr超能文献

基于等变卷积神经网络的 CT 扫描肺结节检测

Pulmonary nodule detection in CT scans with equivariant CNNs.

机构信息

University of Amsterdam, Netherlands; Aidence B.V., Netherlands.

University of Amsterdam, Netherlands.

出版信息

Med Image Anal. 2019 Jul;55:15-26. doi: 10.1016/j.media.2019.03.010. Epub 2019 Mar 28.

Abstract

Convolutional Neural Networks (CNNs) require a large amount of annotated data to learn from, which is often difficult to obtain for medical imaging problems. In this work we show that the sample complexity of CNNs can be significantly improved by using 3D roto-translation group convolutions instead of standard translational convolutions. 3D CNNs with group convolutions (3D G-CNNs) were applied to the problem of false positive reduction for pulmonary nodule detection in CT scans, and proved to be substantially more effective in terms of accuracy, sensitivity to malignant nodules, and speed of convergence compared to a strong and comparable baseline architecture with regular convolutions, extensive data augmentation and a similar number of parameters. For every dataset size tested, the G-CNN achieved a FROC score close to the CNN trained on ten times more data.

摘要

卷积神经网络(CNNs)需要大量的标注数据来进行学习,而对于医学成像问题来说,这往往很难获得。在这项工作中,我们表明,通过使用 3D 旋转变换群卷积而不是标准的平移卷积,可以显著提高 CNN 的样本复杂度。将具有群卷积的 3D CNN(3D G-CNN)应用于 CT 扫描中肺结节检测的假阳性减少问题,与具有常规卷积、广泛数据增强和类似参数数量的强大且可比基线架构相比,在准确性、对恶性结节的敏感性和收敛速度方面表现出显著的优越性。对于测试的每个数据集大小,G-CNN 实现的 FROC 得分都接近在十倍以上的数据上训练的 CNN。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验