Suppr超能文献

高维协方差矩阵和精度矩阵的稳健估计。

Robust estimation of high-dimensional covariance and precision matrices.

作者信息

Avella-Medina Marco, Battey Heather S, Fan Jianqing, Li Quefeng

机构信息

Sloan School of Management, Massachusetts Institute of Technology, 30 Memorial Drive, Cambridge, Massachusetts 02142, U.S.A.

Department of Mathematics, Imperial College London, 545 Huxley Building, South Kensington Campus, London SW7 2AZ, U.K.

出版信息

Biometrika. 2018 Jun 1;105(2):271-284. doi: 10.1093/biomet/asy011. Epub 2018 Mar 27.

Abstract

High-dimensional data are often most plausibly generated from distributions with complex structure and leptokurtosis in some or all components. Covariance and precision matrices provide a useful summary of such structure, yet the performance of popular matrix estimators typically hinges upon a sub-Gaussianity assumption. This paper presents robust matrix estimators whose performance is guaranteed for a much richer class of distributions. The proposed estimators, under a bounded fourth moment assumption, achieve the same minimax convergence rates as do existing methods under a sub-Gaussianity assumption. Consistency of the proposed estimators is also established under the weak assumption of bounded 2 + moments for ∈ (0, 2). The associated convergence rates depend on .

摘要

高维数据通常最有可能由某些或所有分量具有复杂结构和尖峰厚尾性的分布生成。协方差矩阵和精度矩阵提供了这种结构的有用汇总,然而流行的矩阵估计器的性能通常取决于次高斯性假设。本文提出了鲁棒矩阵估计器,其性能对于更丰富的一类分布是有保证的。在有界四阶矩假设下,所提出的估计器实现了与次高斯性假设下现有方法相同的极小极大收敛速率。在所提出的估计器在 ∈ (0, 2) 的有界 2 + 矩的弱假设下也建立了一致性。相关的收敛速率取决于 。

相似文献

1
Robust estimation of high-dimensional covariance and precision matrices.
Biometrika. 2018 Jun 1;105(2):271-284. doi: 10.1093/biomet/asy011. Epub 2018 Mar 27.
2
Minimax Rate-optimal Estimation of High-dimensional Covariance Matrices with Incomplete Data.
J Multivar Anal. 2016 Sep;150:55-74. doi: 10.1016/j.jmva.2016.05.002. Epub 2016 May 19.
3
Robust Covariance Matrix Estimation for High-Dimensional Compositional Data with Application to Sales Data Analysis.
J Bus Econ Stat. 2023;41(4):1090-1100. doi: 10.1080/07350015.2022.2106990. Epub 2022 Sep 21.
4
Robust covariance estimation for high-dimensional compositional data with application to microbial communities analysis.
Stat Med. 2021 Jul 10;40(15):3499-3515. doi: 10.1002/sim.8979. Epub 2021 Apr 11.
6
ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES.
Ann Stat. 2015;43(6):2706-2737. doi: 10.1214/15-AOS1357.
7
A SHRINKAGE PRINCIPLE FOR HEAVY-TAILED DATA: HIGH-DIMENSIONAL ROBUST LOW-RANK MATRIX RECOVERY.
Ann Stat. 2021 Jun;49(3):1239-1266. doi: 10.1214/20-aos1980. Epub 2021 Aug 9.
8
Adversarial meta-learning of Gamma-minimax estimators that leverage prior knowledge.
Electron J Stat. 2023;17(2):1996-2043. doi: 10.1214/23-ejs2151. Epub 2023 Sep 3.
9
Robust Covariance Estimation for Approximate Factor Models.
J Econom. 2019 Jan;208(1):5-22. doi: 10.1016/j.jeconom.2018.09.003. Epub 2018 Oct 6.
10
Optimal Estimation and Rank Detection for Sparse Spiked Covariance Matrices.
Probab Theory Relat Fields. 2015 Apr 1;161(3-4):781-815. doi: 10.1007/s00440-014-0562-z.

引用本文的文献

2
A Class of Structured High-Dimensional Dynamic Covariance Matrices.
Commun Math Stat. 2025 Apr;13(2):371-401. doi: 10.1007/s40304-022-00321-7. Epub 2023 Mar 14.
3
DC algorithm for estimation of sparse Gaussian graphical models.
PLoS One. 2024 Dec 23;19(12):e0315740. doi: 10.1371/journal.pone.0315740. eCollection 2024.
4
Estimation of a genetic Gaussian network using GWAS summary data.
Biometrics. 2024 Oct 3;80(4). doi: 10.1093/biomtc/ujae148.
5
Are Latent Factor Regression and Sparse Regression Adequate?
J Am Stat Assoc. 2024;119(546):1076-1088. doi: 10.1080/01621459.2023.2169700. Epub 2023 Feb 14.
6
Selective inference for -means clustering.
J Mach Learn Res. 2023 May;24.
7
Robust Covariance Matrix Estimation for High-Dimensional Compositional Data with Application to Sales Data Analysis.
J Bus Econ Stat. 2023;41(4):1090-1100. doi: 10.1080/07350015.2022.2106990. Epub 2022 Sep 21.
8
An Efficient Greedy Search Algorithm for High-dimensional Linear Discriminant Analysis.
Stat Sin. 2023 May;33(SI):1343-1364. doi: 10.5705/ss.202021.0028.
9
Covariance estimation via fiducial inference.
Stat Theory Relat Fields. 2021;5(4):316-331. doi: 10.1080/24754269.2021.1877950. Epub 2021 Feb 15.

本文引用的文献

1
Robust Covariance Estimation for Approximate Factor Models.
J Econom. 2019 Jan;208(1):5-22. doi: 10.1016/j.jeconom.2018.09.003. Epub 2018 Oct 6.
2
LARGE COVARIANCE ESTIMATION THROUGH ELLIPTICAL FACTOR MODELS.
Ann Stat. 2018 Aug;46(4):1383-1414. doi: 10.1214/17-AOS1588. Epub 2018 Jun 27.
3
Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions.
J R Stat Soc Series B Stat Methodol. 2017 Jan;79(1):247-265. doi: 10.1111/rssb.12166. Epub 2016 Apr 14.
4
Robust Inference of Risks of Large Portfolios.
J Econom. 2016 Oct;194(2):298-308. doi: 10.1016/j.jeconom.2016.05.008. Epub 2016 Jun 2.
5
Inferring slowly-changing dynamic gene-regulatory networks.
BMC Bioinformatics. 2015;16 Suppl 6(Suppl 6):S5. doi: 10.1186/1471-2105-16-S6-S5. Epub 2015 Apr 17.
6
Large Covariance Estimation by Thresholding Principal Orthogonal Complements.
J R Stat Soc Series B Stat Methodol. 2013 Sep 1;75(4). doi: 10.1111/rssb.12016.
8
KEGG: Kyoto Encyclopedia of Genes and Genomes.
Nucleic Acids Res. 1999 Jan 1;27(1):29-34. doi: 10.1093/nar/27.1.29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验