Suppr超能文献

高维协方差矩阵和精度矩阵的稳健估计。

Robust estimation of high-dimensional covariance and precision matrices.

作者信息

Avella-Medina Marco, Battey Heather S, Fan Jianqing, Li Quefeng

机构信息

Sloan School of Management, Massachusetts Institute of Technology, 30 Memorial Drive, Cambridge, Massachusetts 02142, U.S.A.

Department of Mathematics, Imperial College London, 545 Huxley Building, South Kensington Campus, London SW7 2AZ, U.K.

出版信息

Biometrika. 2018 Jun 1;105(2):271-284. doi: 10.1093/biomet/asy011. Epub 2018 Mar 27.

Abstract

High-dimensional data are often most plausibly generated from distributions with complex structure and leptokurtosis in some or all components. Covariance and precision matrices provide a useful summary of such structure, yet the performance of popular matrix estimators typically hinges upon a sub-Gaussianity assumption. This paper presents robust matrix estimators whose performance is guaranteed for a much richer class of distributions. The proposed estimators, under a bounded fourth moment assumption, achieve the same minimax convergence rates as do existing methods under a sub-Gaussianity assumption. Consistency of the proposed estimators is also established under the weak assumption of bounded 2 + moments for ∈ (0, 2). The associated convergence rates depend on .

摘要

高维数据通常最有可能由某些或所有分量具有复杂结构和尖峰厚尾性的分布生成。协方差矩阵和精度矩阵提供了这种结构的有用汇总,然而流行的矩阵估计器的性能通常取决于次高斯性假设。本文提出了鲁棒矩阵估计器,其性能对于更丰富的一类分布是有保证的。在有界四阶矩假设下,所提出的估计器实现了与次高斯性假设下现有方法相同的极小极大收敛速率。在所提出的估计器在 ∈ (0, 2) 的有界 2 + 矩的弱假设下也建立了一致性。相关的收敛速率取决于 。

相似文献

1
Robust estimation of high-dimensional covariance and precision matrices.高维协方差矩阵和精度矩阵的稳健估计。
Biometrika. 2018 Jun 1;105(2):271-284. doi: 10.1093/biomet/asy011. Epub 2018 Mar 27.
9
Robust Covariance Estimation for Approximate Factor Models.近似因子模型的稳健协方差估计
J Econom. 2019 Jan;208(1):5-22. doi: 10.1016/j.jeconom.2018.09.003. Epub 2018 Oct 6.
10
Optimal Estimation and Rank Detection for Sparse Spiked Covariance Matrices.稀疏尖峰协方差矩阵的最优估计与秩检测
Probab Theory Relat Fields. 2015 Apr 1;161(3-4):781-815. doi: 10.1007/s00440-014-0562-z.

引用本文的文献

2
A Class of Structured High-Dimensional Dynamic Covariance Matrices.一类结构化高维动态协方差矩阵
Commun Math Stat. 2025 Apr;13(2):371-401. doi: 10.1007/s40304-022-00321-7. Epub 2023 Mar 14.
3
DC algorithm for estimation of sparse Gaussian graphical models.用于估计稀疏高斯图形模型的DC算法。
PLoS One. 2024 Dec 23;19(12):e0315740. doi: 10.1371/journal.pone.0315740. eCollection 2024.
5
Are Latent Factor Regression and Sparse Regression Adequate?潜在因子回归和稀疏回归是否足够?
J Am Stat Assoc. 2024;119(546):1076-1088. doi: 10.1080/01621459.2023.2169700. Epub 2023 Feb 14.
9
Covariance estimation via fiducial inference.基于置信推断的协方差估计。
Stat Theory Relat Fields. 2021;5(4):316-331. doi: 10.1080/24754269.2021.1877950. Epub 2021 Feb 15.

本文引用的文献

1
Robust Covariance Estimation for Approximate Factor Models.近似因子模型的稳健协方差估计
J Econom. 2019 Jan;208(1):5-22. doi: 10.1016/j.jeconom.2018.09.003. Epub 2018 Oct 6.
2
LARGE COVARIANCE ESTIMATION THROUGH ELLIPTICAL FACTOR MODELS.通过椭圆因子模型进行大协方差估计
Ann Stat. 2018 Aug;46(4):1383-1414. doi: 10.1214/17-AOS1588. Epub 2018 Jun 27.
4
Robust Inference of Risks of Large Portfolios.大型投资组合风险的稳健推断
J Econom. 2016 Oct;194(2):298-308. doi: 10.1016/j.jeconom.2016.05.008. Epub 2016 Jun 2.
5
Inferring slowly-changing dynamic gene-regulatory networks.推断缓慢变化的动态基因调控网络。
BMC Bioinformatics. 2015;16 Suppl 6(Suppl 6):S5. doi: 10.1186/1471-2105-16-S6-S5. Epub 2015 Apr 17.
8
KEGG: Kyoto Encyclopedia of Genes and Genomes.KEGG:京都基因与基因组百科全书。
Nucleic Acids Res. 1999 Jan 1;27(1):29-34. doi: 10.1093/nar/27.1.29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验