Suppr超能文献

HIV 蛋白酶耐药性分析。

Analysis of drug resistance in HIV protease.

机构信息

Department of Computer Science, 25 Park Place, Atlanta, GA 30303, USA.

Department of Biology, 100 Piedmont Ave., Atlanta, GA 30303, USA.

出版信息

BMC Bioinformatics. 2018 Oct 22;19(Suppl 11):362. doi: 10.1186/s12859-018-2331-y.

Abstract

BACKGROUND

Drug resistance in HIV is the major problem limiting effective antiviral therapy. Computational techniques for predicting drug resistance profiles from genomic data can accelerate the appropriate choice of therapy. These techniques can also be used to select protease mutants for experimental studies of resistance and thereby assist in the development of next-generation therapies.

RESULTS

The machine learning produced highly accurate and robust classification of HIV protease resistance. Genotype data were mapped to the enzyme structure and encoded using Delaunay triangulation. Generative machine learning models trained on one inhibitor could classify resistance from other inhibitors with varying levels of accuracy. Generally, the accuracy was best when the inhibitors were chemically similar.

CONCLUSIONS

Restricted Boltzmann Machines are an effective machine learning tool for classification of genomic and structural data. They can also be used to compare resistance profiles of different protease inhibitors.

摘要

背景

HIV 耐药性是限制有效抗病毒治疗的主要问题。从基因组数据预测耐药性的计算技术可以加速治疗方案的合理选择。这些技术还可用于选择蛋白酶突变体进行耐药性的实验研究,从而有助于开发下一代疗法。

结果

机器学习能够高度准确和稳健地对 HIV 蛋白酶耐药性进行分类。基因型数据被映射到酶结构上,并使用 Delaunay 三角剖分进行编码。在一种抑制剂上训练的生成式机器学习模型可以以不同的准确度对来自其他抑制剂的耐药性进行分类。一般来说,当抑制剂在化学上相似时,准确度最高。

结论

受限玻尔兹曼机是一种有效的基因组和结构数据分类机器学习工具。它们还可用于比较不同蛋白酶抑制剂的耐药性谱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bce/6196403/1e0d92827809/12859_2018_2331_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验