Suppr超能文献

基于 3D 蛋白质结构预测 HIV 耐药性:分子场映射的建议。

Prediction of HIV drug resistance based on the 3D protein structure: Proposal of molecular field mapping.

机构信息

Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.

Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.

出版信息

PLoS One. 2021 Aug 4;16(8):e0255693. doi: 10.1371/journal.pone.0255693. eCollection 2021.

Abstract

A method for predicting HIV drug resistance by using genotypes would greatly assist in selecting appropriate combinations of antiviral drugs. Models reported previously have had two major problems: lack of information on the 3D protein structure and processing of incomplete sequencing data in the modeling procedure. We propose obtaining the 3D structural information of viral proteins by using homology modeling and molecular field mapping, instead of just their primary amino acid sequences. The molecular field potential parameters reflect the physicochemical characteristics associated with the 3D structure of the proteins. We also introduce the Bayesian conditional mutual information theory to estimate the probabilities of occurrence of all possible protein candidates from an incomplete sequencing sample. This approach allows for the effective use of uncertain information for the modeling process. We applied these data analysis techniques to the HIV-1 protease inhibitor dataset and developed drug resistance prediction models with reasonable performance.

摘要

通过使用基因型预测 HIV 耐药性的方法将极大地帮助选择合适的抗病毒药物组合。以前报道的模型存在两个主要问题:缺乏关于 3D 蛋白质结构的信息和在建模过程中处理不完整测序数据。我们建议使用同源建模和分子场映射来获取病毒蛋白的 3D 结构信息,而不仅仅是它们的一级氨基酸序列。分子场势能参数反映了与蛋白质 3D 结构相关的物理化学特性。我们还引入了贝叶斯条件互信息理论来估计来自不完整测序样本的所有可能蛋白质候选物的出现概率。这种方法允许有效利用建模过程中的不确定信息。我们将这些数据分析技术应用于 HIV-1 蛋白酶抑制剂数据集,并开发出具有合理性能的耐药性预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4536/8336827/3653711ed60d/pone.0255693.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验