Xu Botian, Chai Yaqiong, Galarza Cristina M, Vu Chau Q, Tamrazi Benita, Gaonkar Bilwaj, Macyszyn Luke, Coates Thomas D, Lepore Natasha, Wood John C
CIBORG laboratory, Department of Radiology, Children's Hospital Los Angeles (CHLA).
Department of Electrical Engineering, USC.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:889-892. doi: 10.1109/ISBI.2018.8363714. Epub 2018 May 24.
White matter (WM) lesion identification and segmentation has proved of clinical importance for diagnosis, treatment and neurological outcomes. Convolutional neural networks (CNN) have demonstrated their success for large lesion load segmentation, but are not sensitive to small deep WM and sub-cortical lesion segmentation. We propose to use multi-scale and supervised fully convolutional networks (FCN) to segment small WM lesions in 22 anemic patients. The multiple scales enable us to identify the small lesions while reducing many false alarms, and the multi-supervised scheme allows a better management of the unbalanced data. Compared to a single FCN (Dice score ~0.31), the performance on the testing dataset of our proposed networks achieved a Dice score of 0.78.
白质(WM)病变的识别和分割已被证明在诊断、治疗及神经学预后方面具有临床重要性。卷积神经网络(CNN)已在大负荷病变分割中取得成功,但对深部小WM病变和皮质下病变分割不敏感。我们提议使用多尺度和有监督的全卷积网络(FCN)对22例贫血患者的小WM病变进行分割。多尺度使我们能够识别小病变,同时减少许多误报,多监督方案则能更好地处理不平衡数据。与单个FCN(骰子系数约为0.31)相比,我们提出的网络在测试数据集上的性能达到了0.78的骰子系数。