Suppr超能文献

用于脑磁共振成像中小病变分割的全卷积神经网络

ORCHESTRAL FULLY CONVOLUTIONAL NETWORKS FOR SMALL LESION SEGMENTATION IN BRAIN MRI.

作者信息

Xu Botian, Chai Yaqiong, Galarza Cristina M, Vu Chau Q, Tamrazi Benita, Gaonkar Bilwaj, Macyszyn Luke, Coates Thomas D, Lepore Natasha, Wood John C

机构信息

CIBORG laboratory, Department of Radiology, Children's Hospital Los Angeles (CHLA).

Department of Electrical Engineering, USC.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:889-892. doi: 10.1109/ISBI.2018.8363714. Epub 2018 May 24.

Abstract

White matter (WM) lesion identification and segmentation has proved of clinical importance for diagnosis, treatment and neurological outcomes. Convolutional neural networks (CNN) have demonstrated their success for large lesion load segmentation, but are not sensitive to small deep WM and sub-cortical lesion segmentation. We propose to use multi-scale and supervised fully convolutional networks (FCN) to segment small WM lesions in 22 anemic patients. The multiple scales enable us to identify the small lesions while reducing many false alarms, and the multi-supervised scheme allows a better management of the unbalanced data. Compared to a single FCN (Dice score ~0.31), the performance on the testing dataset of our proposed networks achieved a Dice score of 0.78.

摘要

白质(WM)病变的识别和分割已被证明在诊断、治疗及神经学预后方面具有临床重要性。卷积神经网络(CNN)已在大负荷病变分割中取得成功,但对深部小WM病变和皮质下病变分割不敏感。我们提议使用多尺度和有监督的全卷积网络(FCN)对22例贫血患者的小WM病变进行分割。多尺度使我们能够识别小病变,同时减少许多误报,多监督方案则能更好地处理不平衡数据。与单个FCN(骰子系数约为0.31)相比,我们提出的网络在测试数据集上的性能达到了0.78的骰子系数。

相似文献

1
ORCHESTRAL FULLY CONVOLUTIONAL NETWORKS FOR SMALL LESION SEGMENTATION IN BRAIN MRI.用于脑磁共振成像中小病变分割的全卷积神经网络
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:889-892. doi: 10.1109/ISBI.2018.8363714. Epub 2018 May 24.
3

本文引用的文献

3
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
4
Automatic Segmentation of MR Brain Images With a Convolutional Neural Network.基于卷积神经网络的磁共振脑图像自动分割。
IEEE Trans Med Imaging. 2016 May;35(5):1252-1261. doi: 10.1109/TMI.2016.2548501. Epub 2016 Mar 30.
8
Deep learning in neural networks: an overview.神经网络中的深度学习:综述。
Neural Netw. 2015 Jan;61:85-117. doi: 10.1016/j.neunet.2014.09.003. Epub 2014 Oct 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验