Suppr超能文献

基于模型重建的高分辨率 3D 数据快速 T 定量。

Rapid T quantification from high resolution 3D data with model-based reconstruction.

机构信息

Institute of Medical Engineering, Graz University of Technology, Graz, Austria.

BioTechMed-Graz, Graz, Austria.

出版信息

Magn Reson Med. 2019 Mar;81(3):2072-2089. doi: 10.1002/mrm.27502. Epub 2018 Oct 22.

Abstract

PURPOSE

Magnetic resonance imaging protocols for the assessment of quantitative information suffer from long acquisition times since multiple measurements in a parametric dimension are required. To facilitate the clinical applicability, accelerating the acquisition is of high importance. To this end, we propose a model-based optimization framework in conjunction with undersampling 3D radial stack-of-stars data.

THEORY AND METHODS

High resolution 3D T maps are generated from subsampled data by employing model-based reconstruction combined with a regularization functional, coupling information from the spatial and parametric dimension, to exploit redundancies in the acquired parameter encodings and across parameter maps. To cope with the resulting non-linear, non-differentiable optimization problem, we propose a solution strategy based on the iteratively regularized Gauss-Newton method. The importance of 3D-spectral regularization is demonstrated by a comparison to 2D-spectral regularized results. The algorithm is validated for the variable flip angle (VFA) and inversion recovery Look-Locker (IRLL) method on numerical simulated data, MRI phantoms, and in vivo data.

RESULTS

Evaluation of the proposed method using numerical simulations and phantom scans shows excellent quantitative agreement and image quality. T maps from accelerated 3D in vivo measurements, e.g. 1.8 s/slice with the VFA method, are in high accordance with fully sampled reference reconstructions.

CONCLUSIONS

The proposed algorithm is able to recover T maps with an isotropic resolution of 1 mm from highly undersampled radial data by exploiting structural similarities in the imaging volume and across parameter maps.

摘要

目的

评估定量信息的磁共振成像协议由于需要在参数维度上进行多次测量,因此采集时间较长。为了便于临床应用,加速采集非常重要。为此,我们提出了一种基于模型的优化框架,结合欠采样 3D 径向堆叠星数据。

理论和方法

通过使用基于模型的重建结合正则化函数,从欠采样数据生成高分辨率 3D T 图,将来自空间和参数维度的信息耦合起来,利用在采集的参数编码和参数图之间的冗余。为了处理由此产生的非线性、不可微优化问题,我们提出了一种基于迭代正则化高斯牛顿法的解决方案策略。通过与 2D 光谱正则化结果的比较,证明了 3D 光谱正则化的重要性。该算法在数值模拟数据、MRI 体模和体内数据上对可变翻转角 (VFA) 和反转恢复 Look-Locker (IRLL) 方法进行了验证。

结果

使用数值模拟和体模扫描对所提出方法的评估表明,具有出色的定量一致性和图像质量。例如,使用 VFA 方法以 1.8 秒/切片的速度加速 3D 体内测量得到的 T 图与完全采样的参考重建高度一致。

结论

该算法能够通过利用成像体积和参数图之间的结构相似性,从高度欠采样的径向数据中恢复具有 1mm 各向同性分辨率的 T 图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e373/6588000/a4aca9dc00fe/MRM-81-2072-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验