Suppr超能文献

用于加速磁共振成像(MRI)和定量磁共振成像(qMRI)重建的基于域条件先验引导的扩散建模

Diffusion Modeling with Domain-conditioned Prior Guidance for Accelerated MRI and qMRI Reconstruction.

作者信息

Bian Wanyu, Jang Albert, Zhang Liping, Yang Xiaonan, Stewart Zachary, Liu Fang

出版信息

IEEE Trans Med Imaging. 2024 Aug 8;PP. doi: 10.1109/TMI.2024.3440227.

Abstract

This study introduces a novel image reconstruction technique based on a diffusion model that is conditioned on the native data domain. Our method is applied to multi-coil MRI and quantitative MRI (qMRI) reconstruction, leveraging the domain-conditioned diffusion model within the frequency and parameter domains. The prior MRI physics are used as embeddings in the diffusion model, enforcing data consistency to guide the training and sampling process, characterizing MRI k-space encoding in MRI reconstruction, and leveraging MR signal modeling for qMRI reconstruction. Furthermore, a gradient descent optimization is incorporated into the diffusion steps, enhancing feature learning and improving denoising. The proposed method demonstrates a significant promise, particularly for reconstructing images at high acceleration factors. Notably, it maintains great reconstruction accuracy for static and quantitative MRI reconstruction across diverse anatomical structures. Beyond its immediate applications, this method provides potential generalization capability, making it adaptable to inverse problems across various domains.

摘要

本研究介绍了一种基于扩散模型的新型图像重建技术,该模型以原始数据域为条件。我们的方法应用于多线圈磁共振成像(MRI)和定量MRI(qMRI)重建,在频率域和参数域利用域条件扩散模型。将先验MRI物理知识用作扩散模型中的嵌入,强制数据一致性以指导训练和采样过程,表征MRI重建中的MRI k空间编码,并利用MR信号建模进行qMRI重建。此外,在扩散步骤中纳入梯度下降优化,增强特征学习并改善去噪。所提出的方法显示出巨大的前景,特别是对于以高加速因子重建图像。值得注意的是,它在各种解剖结构的静态和定量MRI重建中保持了很高的重建精度。除了其直接应用外,该方法还具有潜在的泛化能力,使其适用于跨各种领域的逆问题。

相似文献

本文引用的文献

3
Adaptive diffusion priors for accelerated MRI reconstruction.自适应扩散先验在加速 MRI 重建中的应用。
Med Image Anal. 2023 Aug;88:102872. doi: 10.1016/j.media.2023.102872. Epub 2023 Jun 20.
4
Diffusion models in medical imaging: A comprehensive survey.扩散模型在医学成像中的应用:全面综述。
Med Image Anal. 2023 Aug;88:102846. doi: 10.1016/j.media.2023.102846. Epub 2023 May 23.
5
Score-based diffusion models for accelerated MRI.基于分数的扩散模型在 MRI 加速中的应用。
Med Image Anal. 2022 Aug;80:102479. doi: 10.1016/j.media.2022.102479. Epub 2022 May 13.
8
Deep Magnetic Resonance Image Reconstruction: Inverse Problems Meet Neural Networks.深度磁共振图像重建:逆问题与神经网络相遇
IEEE Signal Process Mag. 2020 Jan;37(1):141-151. doi: 10.1109/MSP.2019.2950557. Epub 2020 Jan 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验