Department of Chemistry and Molecular Biology , University of Gothenburg , Kemivägen 10 , 405 30 Gothenburg , Sweden.
Department of Psychiatry and Neurochemistry , Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital , House V3, 43180 Mölndal , Sweden.
Anal Chem. 2018 Nov 20;90(22):13580-13590. doi: 10.1021/acs.analchem.8b03746. Epub 2018 Nov 5.
The analysis of small polar compounds with ToF-SIMS and MALDI-ToF-MS have been generally hindered by low detection sensitivity, poor ionization efficiency, ion suppression, analyte in-source fragmentation, and background spectral interferences from either a MALDI matrix and/or endogenous tissue components. Chemical derivatization has been a well-established strategy for improved mass spectrometric detection of many small molecular weight endogenous compounds in tissues. Here, we present a devised strategy to selectively derivatize and sensitively detect catecholamines with both secondary ion ejection and laser desorption ionization strategies, which are used in many imaging mass spectrometry (IMS) experiments. Chemical derivatization of catecholamines was performed by a reaction with a synthesized permanent pyridinium-cation-containing boronic acid molecule, 4-( N-methyl)pyridinium boronic acid, through boronate ester formation (boronic acid-diol reaction). The derivatization facilitates their sensitive detection with ToF-SIMS and LDI-ToF mass spectrometric techniques. 4-( N-Methyl)pyridinium boronic acid worked as a reactive matrix for catecholamines with LDI and improved the sensitivity of detection for both SIMS and LDI, while the isotopic abundances of the boron atom reflect a unique isotopic pattern for derivatized catecholamines in MS analysis. Finally, the devised strategy was applied, as a proof of concept, for on-tissue chemical derivatization and GCIB-ToF-SIMS (down to 3 μm per pixel spatial resolution) and LDI-ToF mass spectrometry imaging of dopamine, epinephrine, and norepinephrine in porcine adrenal gland tissue sections. MS/MS using collision-induced dissociation (CID)-ToF-ToF-SIMS was subsequently employed on the same tissue sections after SIMS and LDI mass spectrometry imaging experiments, which provided tandem MS information for the validation of the derivatized catecholamines in situ. This methodology can be a powerful approach for the selective and sensitive ionization/detection and spatial localization of diol-containing molecules such as aminols, vic-diols, saccharides, and glycans along with catecholamines in tissue sections with both SIMS and LDI/MALDI-MS techniques.
利用 TOF-SIMS 和 MALDI-TOF-MS 分析小极性化合物通常受到低检测灵敏度、差的离子化效率、离子抑制、分析物的源内碎裂以及基质和/或内源性组织成分的背景光谱干扰的限制。化学衍生化已成为提高组织中许多小分子内源性化合物的质谱检测灵敏度的一种成熟策略。在这里,我们提出了一种策略,通过与合成的含永久吡啶阳离子的硼酸分子 4-(N-甲基)吡啶硼酸反应,选择性地衍生化和灵敏地检测儿茶酚胺,该策略用于许多成像质谱 (IMS) 实验中。儿茶酚胺的衍生化是通过硼酸酯形成(硼酸二醇反应)与合成的永久吡啶阳离子硼酸分子 4-(N-甲基)吡啶硼酸反应来进行的。衍生化有助于通过 TOF-SIMS 和 LDI-TOF 质谱技术对其进行灵敏检测。4-(N-甲基)吡啶硼酸作为 LDI 中的儿茶酚胺的反应基质,提高了 SIMS 和 LDI 的检测灵敏度,而硼原子的同位素丰度在 MS 分析中反映了衍生化儿茶酚胺的独特同位素模式。最后,该策略作为概念验证,应用于组织内化学衍生化和 GCIB-TOF-SIMS(每像素 3 μm 的空间分辨率)以及猪肾上腺组织切片中多巴胺、肾上腺素和去甲肾上腺素的 LDI-TOF 质谱成像。在 SIMS 和 LDI 质谱成像实验之后,在相同的组织切片上随后使用碰撞诱导解离 (CID)-TOF-TOF-SIMS 进行 MS/MS,这为原位衍生化儿茶酚胺提供了串联质谱信息。该方法可以成为一种强大的方法,用于在组织切片中同时对含二醇的分子(如氨基醇、邻二醇、糖和聚糖)以及儿茶酚胺进行选择性、灵敏的离子化/检测和空间定位,同时使用 SIMS 和 LDI/MALDI-MS 技术。