Physics Department, University of Gothenburg, 412 96, Gothenburg, Sweden.
NanOsc AB, 164 40, Kista, Sweden.
Nat Commun. 2018 Oct 22;9(1):4374. doi: 10.1038/s41467-018-06589-0.
Short wavelength exchange-dominated propagating spin waves will enable magnonic devices to operate at higher frequencies and higher data transmission rates. While giant magnetoresistance (GMR)-based magnetic nanocontacts are efficient injectors of propagating spin waves, the generated wavelengths are 2.6 times the nano-contact diameter, and the electrical signal strength remains too weak for applications. Here we demonstrate nano-contact-based spin wave generation in magnetic tunnel junctions and observe large-frequency steps consistent with the hitherto ignored possibility of second- and third-order propagating spin waves with wavelengths of 120 and 74 nm, i.e., much smaller than the 150-nm nanocontact. Mutual synchronization is also observed on all three propagating modes. These higher-order propagating spin waves will enable magnonic devices to operate at much higher frequencies and greatly increase their transmission rates and spin wave propagating lengths, both proportional to the much higher group velocity.
短波长交换主导传播自旋波将使磁振子器件能够在更高的频率和更高的数据传输速率下运行。虽然基于巨磁电阻(GMR)的磁性纳米触点是传播自旋波的有效注入器,但产生的波长是纳米触点直径的 2.6 倍,而且电信号强度仍然太弱,无法应用。在这里,我们在磁性隧道结中演示了基于纳米触点的自旋波产生,并观察到与迄今为止被忽略的二阶和三阶传播自旋波的大频率步长一致,其波长分别为 120nm 和 74nm,即远小于 150nm 的纳米触点。在所有三种传播模式中也观察到了相互同步。这些高阶传播自旋波将使磁振子器件能够在更高的频率下运行,并大大提高它们的传输速率和自旋波传播长度,这两者都与更高的群速度成正比。