Vasile Silvana, Roos Katarina
Department of Cell and Molecular Biology, Uppsala University, Uppsala 751 23, Sweden.
ACS Omega. 2023 Jun 6;8(24):21438-21449. doi: 10.1021/acsomega.2c08156. eCollection 2023 Jun 20.
Despite being involved in several human diseases, metalloenzymes are targeted by a small percentage of FDA-approved drugs. Development of novel and efficient inhibitors is required, as the chemical space of metal binding groups (MBGs) is currently limited to four main classes. The use of computational chemistry methods in drug discovery has gained momentum thanks to accurate estimates of binding modes and binding free energies of ligands to receptors. However, exact predictions of binding free energies in metalloenzymes are challenging due to the occurrence of nonclassical phenomena and interactions that common force field-based methods are unable to correctly describe. In this regard, we applied density functional theory (DFT) to predict the binding free energies and to understand the structure-activity relationship of metalloenzyme fragment-like inhibitors. We tested this method on a set of small-molecule inhibitors with different electronic properties and coordinating two Mn ions in the binding site of the influenza RNA polymerase PA endonuclease. We modeled the binding site using only atoms from the first coordination shell, hence reducing the computational cost. Thanks to the explicit treatment of electrons by DFT, we highlighted the main contributions to the binding free energies and the electronic features differentiating strong and weak inhibitors, achieving good qualitative correlation with the experimentally determined affinities. By introducing automated docking, we explored alternative ways to coordinate the metal centers and we identified 70% of the highest affinity inhibitors. This methodology provides a fast and predictive tool for the identification of key features of metalloenzyme MBGs, which can be useful for the design of new and efficient drugs targeting these ubiquitous proteins.
尽管金属酶与多种人类疾病有关,但只有一小部分FDA批准的药物以金属酶为靶点。由于金属结合基团(MBG)的化学空间目前仅限于四大类,因此需要开发新型高效的抑制剂。在药物发现中使用计算化学方法已获得发展动力,这得益于对配体与受体结合模式和结合自由能的准确估计。然而,由于存在非经典现象和相互作用,基于常见力场的方法无法正确描述这些现象,因此准确预测金属酶中的结合自由能具有挑战性。在这方面,我们应用密度泛函理论(DFT)来预测结合自由能,并理解金属酶片段样抑制剂的构效关系。我们在一组具有不同电子性质且在流感RNA聚合酶PA核酸内切酶结合位点配位两个锰离子的小分子抑制剂上测试了该方法。我们仅使用第一配位层的原子对结合位点进行建模,从而降低了计算成本。由于DFT对电子的显式处理,我们突出了对结合自由能的主要贡献以及区分强抑制剂和弱抑制剂的电子特征,与实验测定的亲和力实现了良好的定性相关性。通过引入自动对接,我们探索了配位金属中心的替代方法,并确定了70%的高亲和力抑制剂。这种方法为识别金属酶MBG的关键特征提供了一种快速且具有预测性的工具,这对于设计针对这些普遍存在的蛋白质的新型高效药物可能是有用的。