Department of Biomedical Data Science, Stanford University, Stanford, California.
Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong.
Stat Med. 2019 Mar 15;38(6):917-932. doi: 10.1002/sim.8015. Epub 2018 Oct 23.
For a two-group comparative study, a stratified inference procedure is routinely used to estimate an overall group contrast to increase the precision of the simple two-sample estimator. Unfortunately, most commonly used methods including the Cochran-Mantel-Haenszel statistic for a binary outcome and the stratified Cox procedure for the event time endpoint do not serve this purpose well. In fact, these procedures may be worse than their two-sample counterparts even when the observed treatment allocations are imbalanced across strata. Various procedures beyond the conventional stratified methods have been proposed to increase the precision of estimation when the naive estimator is consistent. In this paper, we are interested in the case when the treatment allocation proportions vary markedly across strata. We study the stochastic properties of the two-sample naive estimator conditional on the ancillary statistics, the observed treatment allocation proportions and/or the stratum sizes, and present a biased-adjusted estimator. This adjusted estimator is asymptotically equivalent to the augmentation estimators proposed under the unconditional setting. Moreover, this consistent estimation procedure is also equivalent to a rather simple procedure, which estimates the mean response of each treatment group first via a stratum-size weighted average and then constructs the group contrast estimate. This simple procedure is flexible and readily applicable to any target patient population by choosing appropriate stratum weights. All the proposals are illustrated with the data from a cardiovascular clinical trial, whose treatment allocations are imbalanced.
对于两组比较研究,通常使用分层推断程序来估计总体组对比,以提高简单两样本估计量的精度。不幸的是,大多数常用的方法,包括用于二分类结局的 Cochran-Mantel-Haenszel 统计量和用于事件时间终点的分层 Cox 程序,都不能很好地达到这一目的。事实上,即使观察到的治疗分配在各层之间不平衡,这些程序也可能比它们的两样本对应程序更差。当原始估计量一致时,已经提出了各种超越传统分层方法的程序来提高估计精度。在本文中,我们对治疗分配比例在各层之间明显不同的情况感兴趣。我们研究了在辅助统计量、观察到的治疗分配比例和/或层大小的条件下,两样本原始估计量的随机性质,并提出了一个有偏调整估计量。这个调整后的估计量在无条件设置下的扩充估计量是渐近等效的。此外,这个一致的估计程序也相当于一个相当简单的程序,该程序首先通过层大小加权平均值来估计每个治疗组的平均响应,然后构建组对比估计值。这个简单的程序很灵活,通过选择适当的层权重,可应用于任何目标患者人群。所有的建议都用心血管临床试验的数据来说明,其治疗分配是不平衡的。