Suppr超能文献

通过随机对照研究估计治疗效果的协方差分析稳健替代方法

Robust Alternatives to ANCOVA for Estimating the Treatment Effect via a Randomized Comparative Study.

作者信息

Jiang Fei, Tian Lu, Fu Haoda, Hasegawa Takahiro, Wei L J

机构信息

Department of Statistics & Actuarial Science, The University of Hong Kong, Pokfulam, Hong Kong.

Department of Biomedical Data Science, Stanford University, Stanford, CA.

出版信息

J Am Stat Assoc. 2019;114(528):1854-1864. doi: 10.1080/01621459.2018.1527226. Epub 2019 Mar 18.

Abstract

In comparing two treatments via a randomized clinical trial, the analysis of covariance (ANCOVA) technique is often utilized to estimate an overall treatment effect. The ANCOVA is generally perceived as a more efficient procedure than its simple two sample estimation counterpart. Unfortunately, when the ANCOVA model is nonlinear, the resulting estimator is generally not consistent. Recently, various nonparametric alternatives to the ANCOVA, such as the augmentation methods, have been proposed to estimate the treatment effect by adjusting the covariates. However, the properties of these alternatives have not been studied in the presence of treatment allocation imbalance. In this article, we take a different approach to explore how to improve the precision of the naive two-sample estimate even when the observed distributions of baseline covariates between two groups are dissimilar. Specifically, we derive a bias-adjusted estimation procedure constructed from a conditional inference principle via relevant ancillary statistics from the observed covariates. This estimator is shown to be asymptotically equivalent to an augmentation estimator under the unconditional setting. We utilize the data from a clinical trial for evaluating a combination treatment of cardiovascular diseases to illustrate our findings.

摘要

在通过随机临床试验比较两种治疗方法时,协方差分析(ANCOVA)技术常被用于估计总体治疗效果。一般认为,ANCOVA比简单的两样本估计方法更为有效。不幸的是,当ANCOVA模型是非线性时,所得估计量通常是不一致的。最近,人们提出了各种ANCOVA的非参数替代方法,如增广方法,通过调整协变量来估计治疗效果。然而,在存在治疗分配不平衡的情况下,尚未对这些替代方法的性质进行研究。在本文中,我们采用了一种不同的方法来探索如何提高朴素两样本估计的精度,即使两组之间观察到的基线协变量分布不同。具体而言,我们通过观察到的协变量的相关辅助统计量,从条件推断原理出发,推导出一种偏差调整估计程序。在无条件设定下,该估计量被证明与增广估计量渐近等价。我们利用一项评估心血管疾病联合治疗的临床试验数据来说明我们的发现。

相似文献

1
Robust Alternatives to ANCOVA for Estimating the Treatment Effect via a Randomized Comparative Study.
J Am Stat Assoc. 2019;114(528):1854-1864. doi: 10.1080/01621459.2018.1527226. Epub 2019 Mar 18.
3
On the covariate-adjusted estimation for an overall treatment difference with data from a randomized comparative clinical trial.
Biostatistics. 2012 Apr;13(2):256-73. doi: 10.1093/biostatistics/kxr050. Epub 2012 Jan 30.
5
Robustness of ANCOVA in randomized trials with unequal randomization.
Biometrics. 2020 Sep;76(3):1036-1038. doi: 10.1111/biom.13184. Epub 2019 Dec 10.
6
Analysis of covariance in randomized trials: More precision and valid confidence intervals, without model assumptions.
Biometrics. 2019 Dec;75(4):1391-1400. doi: 10.1111/biom.13062. Epub 2019 Jun 3.
7
Doubly robust inference for targeted minimum loss-based estimation in randomized trials with missing outcome data.
Stat Med. 2017 Oct 30;36(24):3807-3819. doi: 10.1002/sim.7389. Epub 2017 Jul 25.
8
Conditional estimation and inference to address observed covariate imbalance in randomized clinical trials.
Clin Trials. 2019 Apr;16(2):122-131. doi: 10.1177/1740774518813120. Epub 2018 Nov 16.
9
Analyzing pre-post randomized studies with one post-randomization score using repeated measures and ANCOVA models.
Stat Methods Med Res. 2019 Oct-Nov;28(10-11):2952-2974. doi: 10.1177/0962280218789972. Epub 2018 Aug 7.
10
Landmark estimation of survival and treatment effects in observational studies.
Lifetime Data Anal. 2017 Apr;23(2):161-182. doi: 10.1007/s10985-016-9358-z. Epub 2016 Feb 15.

引用本文的文献

3
Bayesian adaptive design for covariate-adaptive historical control information borrowing.
Stat Med. 2023 Dec 20;42(29):5338-5352. doi: 10.1002/sim.9913. Epub 2023 Sep 26.
5
Inference in response-adaptive clinical trials when the enrolled population varies over time.
Biometrics. 2023 Mar;79(1):381-393. doi: 10.1111/biom.13582. Epub 2021 Nov 10.
6
Heterogeneity in design and analysis of ICU delirium randomized trials: a systematic review.
Trials. 2021 May 20;22(1):354. doi: 10.1186/s13063-021-05299-1.
9
Sinew acupuncture for knee osteoarthritis: study protocol for a randomized sham-controlled trial.
BMC Complement Altern Med. 2018 Apr 23;18(1):133. doi: 10.1186/s12906-018-2195-8.

本文引用的文献

1
Evaluation of subset matching methods and forms of covariate balance.
Stat Med. 2016 Nov 30;35(27):4961-4979. doi: 10.1002/sim.7036. Epub 2016 Jul 21.
2
On the restricted mean survival time curve in survival analysis.
Biometrics. 2016 Mar;72(1):215-21. doi: 10.1111/biom.12384. Epub 2015 Aug 24.
3
Model-Free Feature Screening for Ultrahigh Dimensional Data.
J Am Stat Assoc. 2011 Jan 1;106(496):1464-1475. doi: 10.1198/jasa.2011.tm10563. Epub 2012 Jan 24.
4
On the covariate-adjusted estimation for an overall treatment difference with data from a randomized comparative clinical trial.
Biostatistics. 2012 Apr;13(2):256-73. doi: 10.1093/biostatistics/kxr050. Epub 2012 Jan 30.
5
Increasing the Efficiency of Prevention Trials by Incorporating Baseline Covariates.
Stat Commun Infect Dis. 2010 Jan 1;2(1). doi: 10.2202/1948-4690.1002.
6
Matching methods for causal inference: A review and a look forward.
Stat Sci. 2010 Feb 1;25(1):1-21. doi: 10.1214/09-STS313.
8
Efficient and robust method for comparing the immunogenicity of candidate vaccines in randomized clinical trials.
Vaccine. 2009 Jan 14;27(3):396-401. doi: 10.1016/j.vaccine.2008.10.083. Epub 2008 Nov 18.
9
Improving efficiency of inferences in randomized clinical trials using auxiliary covariates.
Biometrics. 2008 Sep;64(3):707-715. doi: 10.1111/j.1541-0420.2007.00976.x. Epub 2008 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验