Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY
Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY.
Diabetes. 2019 Jan;68(1):141-155. doi: 10.2337/db18-0232. Epub 2018 Oct 23.
The molecular and cellular level reaches of the metabolic dysregulations that characterize diabetes are yet to be fully discovered. As mechanisms underlying management of reactive oxygen species (ROS) gain interest as crucial factors in cell integrity, questions arise about the role of redox cues in the regulation and maintenance of bone marrow-derived multipotent stromal cells (BMSCs) that contribute to wound healing, particularly in diabetes. Through comparison of BMSCs from wild-type and diabetic mice, with a known redox and metabolic disorder, we found that the cytoprotective nuclear factor erythroid-related factor 2 (Nrf2)/kelch-like erythroid cell-derived protein 1 (Keap1) pathway is dysregulated and functionally insufficient in diabetic BMSCs (dBMSCs). Nrf2 is basally active, but in chronic ROS, we found irregular inhibition of Nrf2 by Keap1, altered metabolism, and limited BMSC multipotency. Forced upregulation of Nrf2-directed transcription, through knockdown of Keap1, restores redox homeostasis. Normalized Nrf2/Keap1 signaling restores multipotent cell properties in dBMSCs through Sox2 expression. These restored BMSCs can resume their role in regenerative tissue repair and promote healing of diabetic wounds. Knowledge of diabetes and hyperglycemia-induced deficits in BMSC regulation, and strategies to reverse them, offers translational promise. Our study establishes Nrf2/Keap1 as a cytoprotective pathway, as well as a metabolic rheostat, that affects cell maintenance and differentiation switches in BMSCs.
糖尿病特征性代谢失调的分子和细胞水平仍有待充分发现。由于活性氧 (ROS) 管理机制作为细胞完整性的关键因素引起关注,因此关于氧化还原信号在骨髓来源多能基质细胞 (BMSC) 的调节和维持中的作用的问题出现了,这些细胞有助于伤口愈合,尤其是在糖尿病中。通过比较野生型和糖尿病小鼠的 BMSC(已知存在氧化还原和代谢紊乱),我们发现核因子红细胞相关因子 2 (Nrf2)/kelch 样红细胞衍生蛋白 1 (Keap1) 途径在糖尿病 BMSC (dBMSCs) 中失调且功能不足。Nrf2 基础上是活跃的,但在慢性 ROS 中,我们发现 Keap1 不规则地抑制 Nrf2,改变代谢并限制 BMSC 的多能性。通过敲低 Keap1 强制上调 Nrf2 定向转录,可恢复氧化还原稳态。正常化的 Nrf2/Keap1 信号通过 Sox2 表达恢复 dBMSCs 的多能细胞特性。这些恢复的 BMSC 可以恢复其在再生组织修复中的作用,并促进糖尿病伤口的愈合。了解糖尿病和高血糖引起的 BMSC 调节缺陷及其逆转策略,提供了转化的前景。我们的研究确立了 Nrf2/Keap1 作为一种细胞保护途径,以及一种代谢变阻器,影响 BMSC 的细胞维持和分化开关。