From the Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (S.V., Q.X., B.S.-R., E.A.F., L.L.H., B.L., K.K.G.).
Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (S.V., U.J.).
Arterioscler Thromb Vasc Biol. 2018 Oct;38(10):2423-2434. doi: 10.1161/ATVBAHA.118.311668.
Objective- Actin cytoskeleton assembly and organization, as a result of focal adhesion (FA) formation during cell adhesion, are dependent on reactive oxygen species and the cellular redox environment. Poldip2 (polymerase δ-interacting protein 2), a novel regulator of NOX4 (NADPH oxidase 4), plays a significant role in reactive oxygen species production and cytoskeletal remodeling. Thus, we hypothesized that endogenous reactive oxygen species derived from Poldip2/NOX4 contribute to redox regulation of actin and cytoskeleton assembly during integrin-mediated cell adhesion. Approach and Results- Using vascular smooth muscle cells, we verified that hydrogen peroxide (HO) levels increase during integrin-mediated cell attachment as a result of activation of NOX4. Filamentous actin (F-actin) was oxidized by sulfenylation during cell attachment, with a peak at 3 hours (0.80±0.04 versus 0.08±0.13 arbitrary units at time zero), which was enhanced by overexpression of Poldip2. Depletion of Poldip2 or NOX4 using siRNA, or scavenging of endogenous HO with catalase, inhibited F-actin oxidation by 78±26%, 99±1%, and 98±1%, respectively. To determine the consequence of F-actin oxidation, we examined the binding of F-actin to vinculin, a protein involved in FA complexes that regulates FA maturation. Vinculin binding during cell adhesion as well as migration capacity were inhibited after transfection with actin containing 2 oxidation-resistant point mutations (C272A and C374A). Silencing of Poldip2 or NOX4 also impaired actin-vinculin interaction, which disturbed maturation of FAs and inhibited cell migration. Conclusions- These results suggest that integrin engagement during cell attachment activates Poldip2/Nox4 to oxidize actin, which modulates FA assembly.
目的- 细胞黏附过程中黏着斑(FA)的形成导致肌动蛋白细胞骨架的组装和组织,这依赖于活性氧和细胞内氧化还原环境。Poldip2(聚合酶δ相互作用蛋白 2)是一种新型的 NOX4(NADPH 氧化酶 4)调节剂,在活性氧产生和细胞骨架重塑中发挥重要作用。因此,我们假设来自 Poldip2/NOX4 的内源性活性氧有助于整合素介导的细胞黏附过程中肌动蛋白和细胞骨架组装的氧化还原调节。
方法和结果- 使用血管平滑肌细胞,我们验证了整合素介导的细胞黏附过程中 NOX4 的激活导致过氧化氢(HO)水平增加。黏附过程中丝状肌动蛋白(F-actin)发生磺化亚硝基化,3 小时时达到峰值(0.80±0.04 比 0.08±0.13 任意单位),过表达 Poldip2 后增强。用 siRNA 耗尽 Poldip2 或 NOX4,或用过氧化氢酶清除内源性 HO,分别抑制 F-actin 氧化 78±26%、99±1%和 98±1%。为了确定 F-actin 氧化的后果,我们研究了 F-actin 与参与 FA 复合物形成并调节 FA 成熟的蛋白 vinculin 的结合。细胞黏附过程中以及转染具有 2 个氧化抗性点突变(C272A 和 C374A)的肌动蛋白后,vinculin 结合以及迁移能力受到抑制。沉默 Poldip2 或 NOX4 也会损害肌动蛋白- vinculin 相互作用,干扰 FA 的成熟并抑制细胞迁移。
结论- 这些结果表明,细胞黏附过程中整合素的结合激活了 Poldip2/Nox4 来氧化肌动蛋白,从而调节 FA 的组装。