Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.
Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France.
Genome Res. 2018 Dec;28(12):1867-1881. doi: 10.1101/gr.236554.118. Epub 2018 Oct 24.
The eukaryotic genome is divided into chromosomal domains of heterochromatin and euchromatin. Transcriptionally silent heterochromatin is found at subtelomeric regions, leading to the telomeric position effect (TPE) in yeast, fly, and human. Heterochromatin generally initiates and spreads from defined loci, and diverse mechanisms prevent the ectopic spread of heterochromatin into euchromatin. Here, we overexpressed the silencing factor Sir3 at varying levels in yeast and found that Sir3 spreads into extended silent domains (ESDs), eventually reaching saturation at subtelomeres. We observed the spread of Sir3 into subtelomeric domains associated with specific histone marks in wild-type cells, and stopping at zones of histone mark transitions including H3K79 trimethylation levels. Our study shows that the conserved H3K79 methyltransferase Dot1 is essential in restricting Sir3 spread beyond ESDs, thus ensuring viability upon overexpression of Sir3. Last, our analyses of published data demonstrate how ESDs unveil uncharacterized discrete domains isolating structural and functional subtelomeric features from the rest of the genome. Our work offers a new approach on how to separate subtelomeres from the core chromosome.
真核基因组分为异染色质和常染色质的染色体域。转录沉默的异染色质位于端粒区域,导致酵母、果蝇和人类的端粒位置效应(TPE)。异染色质通常从特定的基因座起始并扩散,多种机制可以防止异染色质异位扩散到常染色质中。在这里,我们在酵母中以不同的水平过表达沉默因子 Sir3,发现 Sir3 扩散到扩展的沉默域(ESD)中,最终在端粒附近达到饱和。我们观察到 Sir3 在野生型细胞中与特定组蛋白标记相关的端粒域扩散,并在包括 H3K79 三甲基化水平在内的组蛋白标记转换区停止。我们的研究表明,保守的 H3K79 甲基转移酶 Dot1 对于限制 Sir3 在 ESD 之外的扩散至关重要,因此在 Sir3 过表达时确保了细胞的存活。最后,我们对已发表数据的分析表明,ESD 如何揭示未被表征的离散域,将结构和功能上的端粒特征与基因组的其余部分隔离开来。我们的工作提供了一种新的方法,可以将端粒与核心染色体分离。