Department of Biochemistry, University of Oxford, Oxford,United Kingdom.
Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America.
PLoS Comput Biol. 2018 Oct 24;14(10):e1006548. doi: 10.1371/journal.pcbi.1006548. eCollection 2018 Oct.
The size of a cell sets the scale for all biochemical processes within it, thereby affecting cellular fitness and survival. Hence, cell size needs to be kept within certain limits and relatively constant over multiple generations. However, how cells measure their size and use this information to regulate growth and division remains controversial. Here, we present two mechanistic mathematical models of the budding yeast (S. cerevisiae) cell cycle to investigate competing hypotheses on size control: inhibitor dilution and titration of nuclear sites. Our results suggest that an inhibitor-dilution mechanism, in which cell growth dilutes the transcriptional inhibitor Whi5 against the constant activator Cln3, can facilitate size homeostasis. This is achieved by utilising a positive feedback loop to establish a fixed size threshold for the Start transition, which efficiently couples cell growth to cell cycle progression. Yet, we show that inhibitor dilution cannot reproduce the size of mutants that alter the cell's overall ploidy and WHI5 gene copy number. By contrast, size control through titration of Cln3 against a constant number of genomic binding sites for the transcription factor SBF recapitulates both size homeostasis and the size of these mutant strains. Moreover, this model produces an imperfect 'sizer' behaviour in G1 and a 'timer' in S/G2/M, which combine to yield an 'adder' over the whole cell cycle; an observation recently made in experiments. Hence, our model connects these phenomenological data with the molecular details of the cell cycle, providing a systems-level perspective of budding yeast size control.
细胞的大小决定了其内部所有生化过程的规模,从而影响细胞的适应性和生存能力。因此,细胞大小需要保持在一定的限制内,并在多个世代中相对稳定。然而,细胞如何测量其大小并利用此信息来调节生长和分裂仍然存在争议。在这里,我们提出了两个酿酒酵母(S. cerevisiae)细胞周期的机械数学模型,以研究关于大小控制的竞争假说:抑制剂稀释和核位点滴定。我们的结果表明,一种抑制剂稀释机制,其中细胞生长稀释转录抑制剂 Whi5 以对抗恒定的激活剂 Cln3,可以促进大小的稳态。这是通过利用正反馈回路来建立 Start 转换的固定大小阈值来实现的,该反馈回路有效地将细胞生长与细胞周期进程耦合。然而,我们表明,抑制剂稀释不能再现改变细胞整体倍性和 WHI5 基因拷贝数的突变体的大小。相比之下,通过 Cln3 滴定转录因子 SBF 的恒定数量的基因组结合位点来控制大小,可以再现大小稳态和这些突变菌株的大小。此外,该模型在 G1 中产生了不完美的“尺寸器”行为,在 S/G2/M 中产生了“定时器”,两者结合在整个细胞周期中产生了“加法器”;这是最近在实验中观察到的。因此,我们的模型将这些现象学数据与细胞周期的分子细节联系起来,为酿酒酵母大小控制提供了系统水平的视角。