Suppr超能文献

城市多光谱 LiDAR 数据的有监督空间分类。

Supervised spatial classification of multispectral LiDAR data in urban areas.

机构信息

Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China.

Department of Natural Resources and Society, College of Natural Resources, University of Idaho, Moscow, ID, United States of America.

出版信息

PLoS One. 2018 Oct 24;13(10):e0206185. doi: 10.1371/journal.pone.0206185. eCollection 2018.

Abstract

Multispectral LiDAR (light detection and ranging) data have been initially used for land cover classification. However, there are still high classification uncertainties, especially in urban areas, where objects are often mixed and confounded. This study investigated the efficiency of combining advanced statistical methods and LiDAR metrics derived from multispectral LiDAR data for improving land cover classification accuracy in urban areas. The study area is located in Oshawa, Ontario, Canada, on the Lake Ontario shoreline. Multispectral Optech Titan LiDAR data over the study area were acquired on 3 September 2014 in a single strip of 3 km2. Using the channels at 1,550 nm (C1), 1,064 nm (C2) and 532 nm (C3), LiDAR intensity data, normalized digital surface model (nDSM), pseudo normalized difference vegetation index (PseudoNDVI), morphological profiles (MP), and a novel hierarchical morphological profiles (HMP) were derived and used as features for the classification. A support vector machine classifier with a radial basis function (RBF) kernel was applied in the classification stage, where the optimal parameters for the classifier were selected by a grid search procedure. The combination of intensity, pseudoNDVI, nDSM and HMP resulted in the best land cover classification, with an overall accuracy of 93.28%.

摘要

多光谱激光雷达(光探测和测距)数据最初被用于土地覆盖分类。然而,仍存在很高的分类不确定性,特别是在城市地区,那里的物体通常是混合和混淆的。本研究探讨了结合先进的统计方法和从多光谱激光雷达数据中提取的激光雷达指标来提高城市地区土地覆盖分类精度的效率。研究区域位于加拿大安大略省奥沙瓦,位于安大略湖北岸。2014 年 9 月 3 日,在一个 3 平方公里的单一地带获取了多光谱 Optech Titan 激光雷达数据。利用 1550nm(C1)、1064nm(C2)和 532nm(C3)三个通道,提取了激光雷达强度数据、归一化数字表面模型(nDSM)、伪归一化差异植被指数(PseudoNDVI)、形态剖面(MP)和一种新的分层形态剖面(HMP),并将其作为分类特征。在分类阶段应用了具有径向基函数(RBF)核的支持向量机分类器,通过网格搜索过程选择了分类器的最佳参数。强度、伪 NDVI、nDSM 和 HMP 的组合产生了最佳的土地覆盖分类,总体精度为 93.28%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cca/6200265/a7c0e37d48f3/pone.0206185.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验