Suppr超能文献

评估伊朗马赞达兰省的火灾隐患潜力及其主要驱动因素:一种数据驱动的方法。

Assessing fire hazard potential and its main drivers in Mazandaran province, Iran: a data-driven approach.

机构信息

Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar, 9617916487, Khorasan Razavi, Iran.

Institute of Geography and Spatial Planning, University of Lisbon (Universidade de Lisboa), Lisbon, 1600-276, Portugal.

出版信息

Environ Monit Assess. 2018 Oct 24;190(11):670. doi: 10.1007/s10661-018-7052-1.

Abstract

Fires are a major disturbance to forest ecosystems and socioeconomic activities in Mazandaran province, northern Iran, particularly in the Hyrcanian forest sub-region. Mapping the spatial distribution of fire hazard levels and the most important influencing factors is crucial to enhance fire management strategies. In this research, MODIS hotspots were used to represent fire events covering Mazandaran Province over the period 2000-2016. We applied the ecological niche theory through the maximum entropy (MaxEnt) method to estimate fire hazard potential and the association with different anthropogenic and biophysical conditions, by applying different modeling approaches (heuristic, permutation, and jackknife metrics). Our results show that higher fire likelihood is related to density of settlements, distance to roads up to 3 km and to land cover types associated with agricultural activities, indicating a strong influence of human activities in fire occurrence in the region. To decrease fire hazard, prevention activities related to population awareness and the adjustment of farming practices need to be considered.

摘要

火灾是伊朗北部马赞达兰省森林生态系统和社会经济活动的主要干扰因素,特别是在赫卡尼亚森林亚区。绘制火灾危险水平的空间分布以及最重要的影响因素图对于加强火灾管理策略至关重要。在这项研究中,我们使用 MODIS 热点来代表 2000-2016 年期间覆盖马赞达兰省的火灾事件。我们应用生态位理论,通过最大熵(MaxEnt)方法来估计火灾发生的可能性,并与不同的人为和生物物理条件相关联,应用不同的建模方法(启发式、置换和刀切指标)。我们的结果表明,较高的火灾可能性与定居点密度、距离道路 3 公里以内以及与农业活动相关的土地覆盖类型有关,这表明人类活动对该地区火灾发生有很大的影响。为了降低火灾危险,需要考虑与人口意识相关的预防活动和农业实践的调整。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验