Suppr超能文献

基于土壤特性的遗传算法和反向传播神经网络预测稻米镉含量的新方法。

A novel method for predicting cadmium concentration in rice grain using genetic algorithm and back-propagation neural network based on soil properties.

机构信息

School of Land Science and Technology, China University of Geosciences (Beijing), 29 Xueyuan Road, Beijing, 100083, China.

Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Land and Resources, 37 Guanyingyuanxi District, Beijing, 100035, China.

出版信息

Environ Sci Pollut Res Int. 2018 Dec;25(35):35682-35692. doi: 10.1007/s11356-018-3458-0. Epub 2018 Oct 24.

Abstract

Heavy metal pollution is a global ecological safety issue, especially in crops, where it directly threatens regional ecological security and human health. In this study, the back-propagation (BP) neural network optimized by the genetic algorithm (GA) was used to predict the concentration of cadmium (Cd) in rice grain based on influencing factors. As an intelligent information processing system, the GA-BP neural network could learn the laws of Cd movement in the soil-crop system through its own training and use the soil properties to predict the concentration of Cd in grain with high accuracy. The total soil Cd concentration, clay content, Ni concentration, cation exchange capacity (CEC), organic matter (OM), and pH have important impacts and interactions on Cd concentration in rice grain were selected as input factors of the prediction model based on Pearson's correlation analysis and GeoDetector. By using GA to optimize the initial weight, the prediction accuracy of the GA-BP neural network model was optimal compared with the BP neural network model and multiple regression analysis. Based on the Cd concentration predicted in grain by the model, human exposure and health risk can be assessed quickly, enabling measures to be taken in time to reduce the transfer of Cd from soil to the food chain.

摘要

重金属污染是一个全球性的生态安全问题,特别是在农作物中,它直接威胁到区域生态安全和人类健康。在本研究中,基于影响因素,利用遗传算法(GA)优化的反向传播(BP)神经网络来预测稻米中镉(Cd)的浓度。作为一种智能信息处理系统,GA-BP 神经网络可以通过自身的训练来学习土壤-作物系统中 Cd 迁移的规律,并利用土壤特性来高精度地预测谷物中 Cd 的浓度。基于 Pearson 相关性分析和 GeoDetector,选择总土壤 Cd 浓度、粘粒含量、Ni 浓度、阳离子交换量(CEC)、有机质(OM)和 pH 作为预测模型的输入因子,这些因子对稻米中 Cd 浓度具有重要影响和相互作用。通过使用 GA 来优化初始权重,GA-BP 神经网络模型的预测精度优于 BP 神经网络模型和多元回归分析。基于模型预测的谷物中 Cd 浓度,可以快速评估人体暴露和健康风险,及时采取措施减少 Cd 从土壤向食物链的转移。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验