Suppr超能文献

使用逻辑建模评估信号网络中的不确定性

Evaluating Uncertainty in Signaling Networks Using Logical Modeling.

作者信息

Thobe Kirsten, Kuznia Christina, Sers Christine, Siebert Heike

机构信息

Group for Discrete Biomathematics, Department for Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany.

Group for Mathematical Modelling of Cellular Processes, Max-Delbrück Center for Molecular Medicine, Berlin, Germany.

出版信息

Front Physiol. 2018 Oct 9;9:1335. doi: 10.3389/fphys.2018.01335. eCollection 2018.

Abstract

Systems biology studies the structure and dynamics of biological systems using mathematical approaches. Bottom-up approaches create models from prior knowledge but usually cannot cope with uncertainty, whereas top-down approaches infer models directly from data using statistical methods but mostly neglect valuable known information from former studies. Here, we want to present a workflow that includes prior knowledge while allowing for uncertainty in the modeling process. We build not one but all possible models that arise from the uncertainty using logical modeling and subsequently filter for those models in agreement with data in a top-down manner. This approach enables us to investigate new and more complex biological research questions, however, the encoding in such a framework is often not obvious and thus not easily accessible for researcher from life sciences. To mitigate this problem, we formulate a pipeline with specific templates to address some research questions common in signaling network analysis. To illustrate the potential of this approach, we applied the pipeline to growth factor signaling processes in two renal cancer cell lines. These two cell lines originate from similar tissue, but surprisingly showed a very different behavior toward the cancer drug Sorafenib. Thus our aim was to explore differences between these cell lines regarding three sources of uncertainty in one analysis: possible targets of Sorafenib, crosstalk between involved pathways, and the effect of a mutation in mammalian target of Rapamycin (mTOR) in one of the cell lines. We were able to show that the model pools from the cell lines are disjoint, thus the discrepancies in behavior originate from differences in the cellular wiring. Also the mutation in mTOR is not affecting its activity in the pathway. The results on Sorafenib, while not fully clarifying the mechanisms involved, illustrate the potential of this analysis for generating new hypotheses.

摘要

系统生物学运用数学方法研究生物系统的结构和动态。自下而上的方法基于先验知识构建模型,但通常无法应对不确定性;而自上而下的方法则使用统计方法直接从数据中推断模型,但大多忽略了以往研究中有价值的已知信息。在此,我们希望提出一种工作流程,该流程在建模过程中既纳入先验知识,又允许存在不确定性。我们使用逻辑建模构建并非一个而是由不确定性产生的所有可能模型,随后以自上而下的方式筛选出与数据相符的模型。这种方法使我们能够研究新的、更复杂的生物学研究问题,然而,在这样一个框架中的编码通常并不明显,因此生命科学领域的研究人员不容易掌握。为了缓解这个问题,我们制定了一个带有特定模板的流程,以解决信号网络分析中一些常见的研究问题。为了说明这种方法的潜力,我们将该流程应用于两种肾癌细胞系中的生长因子信号传导过程。这两种细胞系起源于相似的组织,但令人惊讶的是,它们对癌症药物索拉非尼表现出非常不同的行为。因此,我们的目标是在一次分析中探讨这些细胞系在三个不确定性来源方面的差异:索拉非尼的可能靶点、相关途径之间的串扰以及其中一个细胞系中雷帕霉素哺乳动物靶点(mTOR)的突变效应。我们能够表明,来自细胞系的模型库是不相交的,因此行为上的差异源于细胞连接方式的不同。此外,mTOR中的突变并不影响其在该途径中的活性。关于索拉非尼的结果虽然没有完全阐明其中涉及的机制,但说明了这种分析在产生新假设方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47c8/6191669/5c404f19d84b/fphys-09-01335-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验