Hernandez Céline, Thomas-Chollier Morgane, Naldi Aurélien, Thieffry Denis
Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
Institut Universitaire de France, Paris, France.
Front Physiol. 2020 Sep 30;11:558606. doi: 10.3389/fphys.2020.558606. eCollection 2020.
At the crossroad between biology and mathematical modeling, computational systems biology can contribute to a mechanistic understanding of high-level biological phenomenon. But as knowledge accumulates, the size and complexity of mathematical models increase, calling for the development of efficient dynamical analysis methods. Here, we propose the use of two approaches for the development and analysis of complex cellular network models. A first approach, called "model verification" and inspired by unitary testing in software development, enables the formalization and automated verification of validation criteria for whole models or selected sub-parts. When combined with efficient analysis methods, this approach is suitable for continuous testing, thereby greatly facilitating model development. A second approach, called "value propagation," enables efficient analytical computation of the impact of specific environmental or genetic conditions on the dynamical behavior of some models. We apply these two approaches to the delineation and the analysis of a comprehensive model for T cell activation, taking into account CTLA4 and PD-1 checkpoint inhibitory pathways. While model verification greatly eases the delineation of logical rules complying with a set of dynamical specifications, propagation provides interesting insights into the different potential of CTLA4 and PD-1 immunotherapies. Both methods are implemented and made available in the all-inclusive CoLoMoTo Docker image, while the different steps of the model analysis are fully reported in two companion interactive jupyter notebooks, thereby ensuring the reproduction of our results.
在生物学与数学建模的交叉领域,计算系统生物学有助于对高级生物现象进行机理理解。但随着知识的积累,数学模型的规模和复杂性不断增加,这就需要开发高效的动力学分析方法。在此,我们提出使用两种方法来开发和分析复杂的细胞网络模型。第一种方法称为“模型验证”,它受到软件开发中单元测试的启发,能够对整个模型或选定的子部分的验证标准进行形式化和自动验证。当与高效分析方法结合使用时,这种方法适用于持续测试,从而极大地促进模型开发。第二种方法称为“值传播”,能够对特定环境或遗传条件对某些模型动力学行为的影响进行高效的分析计算。我们将这两种方法应用于T细胞激活综合模型的描绘和分析,同时考虑了CTLA4和PD - 1检查点抑制途径。虽然模型验证极大地简化了符合一组动力学规范的逻辑规则的描绘,但值传播为CTLA4和PD - 1免疫疗法的不同潜力提供了有趣的见解。这两种方法都在全功能的CoLoMoTo Docker镜像中实现并可用,而模型分析的不同步骤在两个配套的交互式Jupyter笔记本中完整报告,从而确保我们的结果能够重现。