Suppr超能文献

基于扩散模型和等位基因频率谱的基因组推断。

Genomic inference using diffusion models and the allele frequency spectrum.

机构信息

Department of Human Genetics, McGill University, Montreal, QC, Canada.

Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada.

出版信息

Curr Opin Genet Dev. 2018 Dec;53:140-147. doi: 10.1016/j.gde.2018.10.001. Epub 2018 Oct 23.

Abstract

Evolutionary, biological, and demographic processes together shape observed variation in populations. Understanding how these processes influence variation allows us to infer past demography and the nature of selection in populations. Forward in time models such as the diffusion approximation provide a powerful tool for performing inference based on the distribution of allele frequencies. Here, we discuss recent computational developments and their application to reconstructing human demographic history. Using whole-genome sequence data for 797 French Canadian individuals, we assess the neutrality of synonymous variants and show that selection can bias inferred demography, mutation rates, and distributions of fitness effects. We argue that the simple evolutionary models investigated by Kimura and Ohta still provide important insight into modern genetic research.

摘要

进化、生物和人口过程共同塑造了群体中观察到的变异。了解这些过程如何影响变异可以帮助我们推断过去的人口统计学和群体中选择的性质。向前推进的模型,如扩散近似,为基于等位基因频率分布进行推理提供了强大的工具。在这里,我们讨论了最近的计算发展及其在重建人类人口历史方面的应用。使用 797 名加拿大法裔个体的全基因组序列数据,我们评估了同义变体的中性,并表明选择可以使推断的人口统计学、突变率和适应度效应分布产生偏差。我们认为,Kimura 和 Ohta 研究的简单进化模型仍然为现代遗传研究提供了重要的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验