Cheng Qingpeng, Yao Xueli, Ou Lifeng, Hu Zhenpeng, Pan Yu, Zheng Lirong, Morlanes Natalia, Abou-Hamad Edy, Li Xingang, Han Yu, Gascon Jorge
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering and Low-Carbon Technology, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300350, China.
King Abdullah University of Science and Technology (KASUT), KAUST Catalysis Center (KCC), Thuwal, 23955-6900, Saudi Arabia.
Nat Commun. 2025 Jul 1;16(1):5696. doi: 10.1038/s41467-025-61182-6.
Propane dehydrogenation (PDH) is a critical technology for propylene production, yet overcoming the trade-off between activity and stability remains a major challenge. Here, we engineer a robust Pt@Sn-MFI catalyst with a wormhole-type structure, featuring highly dispersed Pt clusters robustly anchored by open sites in Sn-MFI, i.e., [SiO] - Sn-O-Pt, complemented by abundant zeolite defects (i.e., Si-OH) in the proximity. This architecture enables a near-thermodynamic equilibrium conversion and a propylene selectivity of ≥98.5%, with the high apparent forward rate coefficient of 1064.5 mol ghbar and stability for at least 120 h without requiring H or CO co-feeding. Comprehensive characterization, isotope-labeling experiments and theoretical calculations reveal a plausible hydroxy-assisted PDH reaction pathway, wherein the synergy between Pt sites and neighboring hydroxyl groups (i.e., zeolite defects) significantly reduces the energy barrier for H formation via the combination of H in propane adsorbed on Pt sites with H in hydroxyl groups, thereby promoting the PDH process.
丙烷脱氢(PDH)是丙烯生产的关键技术,但克服活性与稳定性之间的权衡仍然是一项重大挑战。在此,我们设计了一种具有蠕虫孔型结构的稳健的Pt@Sn-MFI催化剂,其特征在于高度分散的Pt簇通过Sn-MFI中的开放位点(即[SiO] - Sn-O-Pt)牢固地锚定,并在附近伴有大量的沸石缺陷(即Si-OH)。这种结构实现了接近热力学平衡的转化率和≥98.5%的丙烯选择性,具有1064.5 mol ghbar的高表观正向速率系数,并且在无需氢气或一氧化碳共进料的情况下可稳定运行至少120小时。综合表征、同位素标记实验和理论计算揭示了一种合理的羟基辅助PDH反应途径,其中Pt位点与相邻羟基(即沸石缺陷)之间的协同作用通过吸附在Pt位点上的丙烷中的氢与羟基中的氢结合,显著降低了氢形成的能垒,从而促进了PDH过程。