Laboratory for Photonics and Interfaces, Ecole polytechnique fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
Nat Commun. 2018 Oct 26;9(1):4482. doi: 10.1038/s41467-018-06709-w.
Perovskite solar cells present one of the most prominent photovoltaic technologies, yet their stability, scalability, and engineering at the molecular level remain challenging. We demonstrate a concept of multifunctional molecular modulation of scalable and operationally stable perovskite solar cells that exhibit exceptional solar-to-electric power conversion efficiencies. The judiciously designed bifunctional molecular modulator SN links the mercapto-tetrazolium (S) and phenylammonium (N) moieties, which passivate the surface defects, while displaying a structure-directing function through interaction with the perovskite that induces the formation of large grain crystals of high electronic quality of the most thermally stable formamidinium cesium mixed lead iodide perovskite formulation. As a result, we achieve greatly enhanced solar cell performance with efficiencies exceeding 20% for active device areas above 1 cm without the use of antisolvents, accompanied by outstanding operational stability under ambient conditions.
钙钛矿太阳能电池是最突出的光伏技术之一,但它们的稳定性、可扩展性和分子水平的工程设计仍然具有挑战性。我们展示了一种多功能分子调制的概念,用于可扩展和操作稳定的钙钛矿太阳能电池,这些电池表现出卓越的太阳能到电能转换效率。经过精心设计的双功能分子调节剂 SN 连接了巯基四唑 (S) 和苯甲脒 (N) 部分,它们可以钝化表面缺陷,同时通过与钙钛矿的相互作用显示出结构导向功能,从而诱导形成高质量的大晶粒晶体,这种晶体是最稳定的甲脒碘化铯混合碘化铅钙钛矿配方。结果,我们实现了大大提高的太阳能电池性能,对于面积超过 1 平方厘米的有源器件,效率超过 20%,而无需使用抗溶剂,并在环境条件下具有出色的操作稳定性。