Suppr超能文献

对比增强光谱乳腺摄影(CESM)图像分类。

Classification of contrast-enhanced spectral mammography (CESM) images.

机构信息

School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel.

Sheba Medical Center, Ramat Gan, Israel.

出版信息

Int J Comput Assist Radiol Surg. 2019 Feb;14(2):249-257. doi: 10.1007/s11548-018-1876-6. Epub 2018 Oct 26.

Abstract

PURPOSE

Contrast-enhanced spectral mammography (CESM) is a recently developed breast imaging technique. CESM relies on dual-energy acquisition following contrast agent injection to improve mammography sensitivity. CESM is comparable to contrast-enhanced MRI in terms of sensitivity, at a fraction of the cost. However, since lesion variability is large, even with the improved visibility provided by CESM, differentiation between benign and malignant enhancement is not accurate and a biopsy is usually performed for final assessment. Breast biopsies can be stressful to the patient and are expensive to healthcare systems. Moreover, as the biopsies results are most of the time benign, a specificity improvement in the radiologist diagnosis is required. This work presents a deep learning-based decision support system, which aims at improving the specificity of breast cancer diagnosis by CESM without affecting sensitivity.

METHODS

We compare two analysis approaches, fine-tuning a pretrained network and fully training a convolutional neural network, for classification of CESM breast mass as benign or malignant. Breast Imaging Reporting and Data Systems (BIRADS) is a radiological lexicon, used with breast images, to categorize lesions. We improve each classification network by incorporating BIRADS textual features as an additional input to the network. We evaluate two ways of BIRADS fusion as network input: feature fusion and decision fusion. This leads to multimodal network architectures. At classification, we also exploit information from apparently normal breast tissue in the CESM of the considered patient, leading to a patient-specific classification.

RESULTS

We evaluate performance using fivefold cross-validation, on 129 randomly selected breast lesions annotated by an experienced radiologist. Each annotation includes a contour of the mass in the image, biopsy-proven label of benign or malignant lesion and BIRADS descriptors. At 100% sensitivity, specificity of 66% was achieved using a multimodal network, which combines inputs at feature level and patient-specific classification.

CONCLUSIONS

The presented multimodal network may significantly reduce benign biopsies, without compromising sensitivity.

摘要

目的

对比增强光谱乳腺摄影术(CESM)是一种新开发的乳腺成像技术。CESM 依赖于对比剂注射后的双能采集,以提高乳腺摄影术的灵敏度。CESM 在灵敏度方面可与对比增强 MRI 相媲美,但其成本仅为后者的一小部分。然而,由于病变的可变性很大,即使 CESM 提供了更好的可视性,良性和恶性增强的区分也不够准确,通常需要进行活检以进行最终评估。乳腺活检对患者来说是有压力的,而且对医疗保健系统来说也是昂贵的。此外,由于活检结果大多为良性,因此需要提高放射科医生诊断的特异性。本研究提出了一种基于深度学习的决策支持系统,旨在提高 CESM 诊断乳腺癌的特异性,而不影响灵敏度。

方法

我们比较了两种分析方法,即微调预训练网络和完全训练卷积神经网络,用于分类 CESM 乳腺肿块为良性或恶性。乳腺影像报告和数据系统(BIRADS)是一种放射学词汇,用于对乳腺图像中的病变进行分类。我们通过将 BIRADS 文本特征作为附加输入到网络中,来改进每个分类网络。我们评估了两种将 BIRADS 融合为网络输入的方法:特征融合和决策融合。这导致了多模态网络架构。在分类时,我们还利用了考虑患者的 CESM 中明显正常的乳腺组织的信息,从而实现了患者特异性的分类。

结果

我们使用 129 个由经验丰富的放射科医生标记的随机选择的乳腺病变进行五重交叉验证,评估了性能。每个标注都包括图像中肿块的轮廓、活检证实的良性或恶性病变的标签以及 BIRADS 描述符。在 100%灵敏度下,使用多模态网络实现了 66%的特异性,该网络结合了特征级和患者特异性分类的输入。

结论

所提出的多模态网络可以在不影响灵敏度的情况下显著减少良性活检。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验