Suppr超能文献

深度学习在对比增强光谱乳腺成像中的虚拟对比增强方法。

A deep learning approach for virtual contrast enhancement in Contrast Enhanced Spectral Mammography.

机构信息

Unit of Computer Systems & Bioinformatics, Department of Engineering University Campus Bio-Medico, Rome, Italy.

Department of Radiology, Fondazione Policlinico Campus Bio-Medico, Rome, Italy.

出版信息

Comput Med Imaging Graph. 2024 Sep;116:102398. doi: 10.1016/j.compmedimag.2024.102398. Epub 2024 May 23.

Abstract

Contrast Enhanced Spectral Mammography (CESM) is a dual-energy mammographic imaging technique that first requires intravenously administering an iodinated contrast medium. Then, it collects both a low-energy image, comparable to standard mammography, and a high-energy image. The two scans are combined to get a recombined image showing contrast enhancement. Despite CESM diagnostic advantages for breast cancer diagnosis, the use of contrast medium can cause side effects, and CESM also beams patients with a higher radiation dose compared to standard mammography. To address these limitations, this work proposes using deep generative models for virtual contrast enhancement on CESM, aiming to make CESM contrast-free and reduce the radiation dose. Our deep networks, consisting of an autoencoder and two Generative Adversarial Networks, the Pix2Pix, and the CycleGAN, generate synthetic recombined images solely from low-energy images. We perform an extensive quantitative and qualitative analysis of the model's performance, also exploiting radiologists' assessments, on a novel CESM dataset that includes 1138 images. As a further contribution to this work, we make the dataset publicly available. The results show that CycleGAN is the most promising deep network to generate synthetic recombined images, highlighting the potential of artificial intelligence techniques for virtual contrast enhancement in this field.

摘要

对比增强光谱乳腺摄影术(CESM)是一种双能乳腺成像技术,首先需要静脉内给予碘造影剂。然后,它同时采集低能图像(类似于标准乳腺摄影术)和高能图像。这两个扫描结果被组合起来得到一个显示对比度增强的重组图像。尽管 CESM 在乳腺癌诊断方面具有诊断优势,但造影剂的使用可能会引起副作用,而且与标准乳腺摄影术相比,CESM 也会向患者发射更高剂量的辐射。为了解决这些局限性,这项工作提出在 CESM 上使用深度生成模型进行虚拟对比度增强,旨在使 CESM 无对比并降低辐射剂量。我们的深度网络由一个自动编码器和两个生成对抗网络(Pix2Pix 和 CycleGAN)组成,仅从低能图像生成合成重组图像。我们在一个包括 1138 张图像的新的 CESM 数据集上对模型的性能进行了广泛的定量和定性分析,同时还利用了放射科医生的评估。作为这项工作的进一步贡献,我们公开了数据集。结果表明,CycleGAN 是生成合成重组图像最有前途的深度网络,突出了人工智能技术在该领域虚拟对比度增强方面的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验