Institute for Clinical Pharmacology, Goethe-University Hospital, 60590 Frankfurt am Main, Germany.
Functional Proteomics Group, Goethe-University Hospital, 60590 Frankfurt am Main, Germany.
Redox Biol. 2019 Jan;20:217-235. doi: 10.1016/j.redox.2018.10.002. Epub 2018 Oct 16.
Upregulations of neuronal nitric oxide synthase (nNOS) in the rodent brain have been associated with neuronal aging. To address underlying mechanisms we generated SH-SY5Y neuronal cells constitutively expressing nNOS at a level similar to mouse brain (nNOS+ versus MOCK). Initial experiments revealed S-nitrosylations (SNO) of key players of protein homeostasis: heat shock cognate HSC70/HSPA8 within its nucleotide-binding site, and UBE2D ubiquitin conjugating enzymes at the catalytic site cysteine. HSPA8 is involved in protein folding, organelle import/export and chaperone-mediated LAMP2a-dependent autophagy (CMA). A set of deep redox and full proteome analyses, plus analysis of autophagy, CMA and ubiquitination with rapamycin and starvation as stimuli confirmed the initial observations and revealed a substantial increase of SNO modifications in nNOS+ cells, in particular targeting protein networks involved in protein catabolism, ubiquitination, carbohydrate metabolism and cell cycle control. Importantly, NO-independent reversible oxidations similarly occurred in both cell lines. Functionally, nNOS caused an accumulation of proteins, including CMA substrates and loss of LAMP2a. UBE2D activity and proteasome activity were impaired, resulting in dysregulations of cell cycle checkpoint proteins. The observed changes of protein degradation pathways caused an expansion of the cytoplasm, large lysosomes, slowing of the cell cycle and suppression of proliferation suggesting a switch of the phenotype towards aging, supported by downregulations of neuronal progenitor markers but increase of senescence-associated proteins. Hence, upregulation of nNOS in neuronal cells imposes aging by SNOing of key players of ubiquitination, chaperones and of substrate proteins leading to interference with crucial steps of protein homeostasis.
神经元型一氧化氮合酶 (nNOS) 在啮齿动物大脑中的上调与神经元衰老有关。为了研究潜在的机制,我们生成了 SH-SY5Y 神经元细胞,使其持续表达类似于小鼠大脑水平的 nNOS(nNOS+ 与 MOCK 相比)。最初的实验揭示了蛋白质稳态关键参与者的 S-亚硝基化(SNO):核苷酸结合位点内的热休克同源物 HSC70/HSPA8,以及催化位点半胱氨酸上的 UBE2D 泛素连接酶。HSPA8 参与蛋白质折叠、细胞器导入/导出以及伴侣介导的 LAMP2a 依赖性自噬(CMA)。一组深度氧化还原和全蛋白质组分析,以及使用雷帕霉素和饥饿作为刺激物的自噬、CMA 和泛素化分析,证实了最初的观察结果,并发现 nNOS+细胞中 SNO 修饰的大量增加,特别是靶向涉及蛋白质分解代谢、泛素化、碳水化合物代谢和细胞周期控制的蛋白质网络。重要的是,两种细胞系中也发生了非依赖于 NO 的可逆氧化。功能上,nNOS 导致包括 CMA 底物在内的蛋白质积累和 LAMP2a 的丢失。UBE2D 活性和蛋白酶体活性受损,导致细胞周期检查点蛋白失调。观察到的蛋白质降解途径的变化导致细胞质扩张、大溶酶体、细胞周期减慢和增殖抑制,这表明表型向衰老转变,神经元祖细胞标志物下调但衰老相关蛋白增加支持这一转变。因此,神经元细胞中 nNOS 的上调通过 SNO 化泛素化、伴侣和底物蛋白的关键参与者,导致蛋白质稳态的关键步骤受到干扰,从而导致衰老。