Suppr超能文献

绘制并预测 2002 年至 2050 年苏门答腊虎景观中的森林损失。

Mapping and predicting forest loss in a Sumatran tiger landscape from 2002 to 2050.

机构信息

Virginia Tech, Department of Fish and Wildlife Conservation, 100 Cheatham Hall, 310 W. Campus Drive, Blacksburg, VA 24060, USA.

Virginia Tech, Department of Geography, 115 Major Williams Hall, 220 Stanger Street, Blacksburg, VA 24060, USA.

出版信息

J Environ Manage. 2019 Feb 1;231:397-404. doi: 10.1016/j.jenvman.2018.10.065. Epub 2018 Oct 24.

Abstract

Riau Province in central Sumatra, with its peatland, lowland, and montane forest habitats, was once a stronghold for Sumatran tiger (Panthera tigris sumatrae) populations. Today, Riau may have one of the highest deforestation rates in the world and wildlife populations are dwindling, with natural forest now comprising approximately only 18% of the province, mostly contained within protected areas. Agriculture (acacia, rubber, and oil palm) makes up the majority of Riau's land cover and deforestation for the creation of new plantations is rampant. Natural forest and tigers still remain in Bukit Tigapuluh National Park and Rimbang Baling Wildlife Reserve, which remain connected to tiger populations in montane forest on the western edge of Sumatra. In this study, using freely available Landsat imagery and a maximum likelihood classification algorithm, we create land cover maps for central Sumatra from 2002 to 2016. We then use current land cover, elevation, and slope variables to predict changes from forest to plantation from 2016 to 2050 at five year intervals using a multilayer perceptron neural network. Finally, we compare connectivity based on a 100 km distance threshold (based on potential tiger dispersal) across the landscape and across years. Land cover maps had 80-90% accuracy, and we predict forest in Tesso Nilo and the western edge of the study area to be lost by 2050 given current rates of deforestation. Our connectivity analysis shows that Tesso Nilo and the area between Rimbang Baling and Bukit Tigapuluh are important components for maintaining connectivity throughout the study area. Focusing conservation and rehabilitation efforts on forests close to plantations in flat areas, including Tesso Nilo, is necessary to maintain forests and increase connectivity in Riau to ensure future habitat connectivity for survival of tigers and Sumatra's other diverse endemic species.

摘要

苏门答腊中部的廖内省拥有泥炭地、低地和山地森林生境,曾经是苏门答腊虎(Panthera tigris sumatrae)种群的据点。如今,廖内省可能是世界上森林砍伐率最高的地区之一,野生动物数量正在减少,天然林现在仅占该省的约 18%,主要分布在保护区内。农业(相思树、橡胶和油棕)构成了廖内省土地覆盖的大部分,为了创建新的种植园,森林砍伐猖獗。天然林和老虎仍然存在于武吉蒂加普鲁国家公园和林邦巴冷野生动物保护区,这些地区仍然与苏门答腊西部山地森林的老虎种群相连。在这项研究中,我们使用免费的 Landsat 图像和最大似然分类算法,从 2002 年到 2016 年为苏门答腊中部创建了土地覆盖图。然后,我们使用当前的土地覆盖、海拔和坡度变量,使用多层感知机神经网络,以五年为间隔,预测 2016 年至 2050 年森林向种植园的变化。最后,我们比较了基于 100 公里距离阈值(基于老虎潜在扩散)的景观和年份的连通性。土地覆盖图的准确率为 80-90%,根据目前的森林砍伐速度,我们预测到 2050 年,铁索尼罗和研究区西部边缘的森林将消失。我们的连通性分析表明,铁索尼罗和林邦巴冷与武吉蒂加普鲁之间的地区是维持整个研究区连通性的重要组成部分。在包括铁索尼罗在内的平原地区靠近种植园的森林中集中保护和恢复工作,对于维持森林和增加廖内省的连通性,确保老虎和苏门答腊其他特有物种的未来栖息地连通性至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验