Suppr超能文献

识别美国医疗保险欺诈在医疗服务提供者索赔数据中的方法。

Approaches for identifying U.S. medicare fraud in provider claims data.

机构信息

Florida Atlantic University, Boca Raton, FL, USA.

出版信息

Health Care Manag Sci. 2020 Mar;23(1):2-19. doi: 10.1007/s10729-018-9460-8. Epub 2018 Oct 27.

Abstract

Quality and affordable healthcare is an important aspect in people's lives, particularly as they age. The rising elderly population in the United States (U.S.), with increasing number of chronic diseases, implies continuing healthcare later in life and the need for programs, such as U.S. Medicare, to help with associated medical expenses. Unfortunately, due to healthcare fraud, these programs are being adversely affected draining resources and reducing quality and accessibility of necessary healthcare services. The detection of fraud is critical in being able to identify and, subsequently, stop these perpetrators. The application of machine learning methods and data mining strategies can be leveraged to improve current fraud detection processes and reduce the resources needed to find and investigate possible fraudulent activities. In this paper, we employ an approach to predict a physician's expected specialty based on the type and number of procedures performed. From this approach, we generate a baseline model, comparing Logistic Regression and Multinomial Naive Bayes, in order to test and assess several new approaches to improve the detection of U.S. Medicare Part B provider fraud. Our results indicate that our proposed improvement strategies (specialty grouping, class removal, and class isolation), applied to different medical specialties, have mixed results over the selected Logistic Regression baseline model's fraud detection performance. Through our work, we demonstrate that improvements to current detection methods can be effective in identifying potential fraud.

摘要

高质量且负担得起的医疗保健是人们生活中的一个重要方面,尤其是随着年龄的增长。美国老年人口不断增加,慢性疾病数量不断增加,这意味着人们在以后的生活中需要继续医疗保健,并且需要美国医疗保险等计划来帮助支付相关的医疗费用。不幸的是,由于医疗保健欺诈,这些计划受到了不利影响,消耗了资源,降低了必要医疗服务的质量和可及性。检测欺诈行为对于能够识别并随后阻止这些犯罪者至关重要。可以利用机器学习方法和数据挖掘策略来改进当前的欺诈检测流程,并减少发现和调查可能的欺诈活动所需的资源。在本文中,我们采用了一种方法,根据执行的手术类型和数量来预测医生的预期专业。从这种方法中,我们生成了一个基线模型,比较了逻辑回归和多项式朴素贝叶斯,以测试和评估几种新方法来提高美国医疗保险 B 部分提供者欺诈的检测能力。我们的结果表明,我们提出的改进策略(专业分组、类别删除和类别隔离)应用于不同的医学专业,在选定的逻辑回归基线模型的欺诈检测性能方面具有不同的结果。通过我们的工作,我们证明了对当前检测方法的改进可以有效地识别潜在的欺诈行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验