Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA.
Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
Microb Biotechnol. 2019 Jan;12(1):161-172. doi: 10.1111/1751-7915.13320. Epub 2018 Oct 17.
Microbes naturally build nanoscale structures, including structures assembled from inorganic materials. Here, we combine the natural capabilities of microbes with engineered genetic control circuits to demonstrate the ability to control biological synthesis of chalcogenide nanomaterials in a heterologous host. We transferred reductase genes from both Shewanella sp. ANA-3 and Salmonella enterica serovar Typhimurium into a heterologous host (Escherichia coli) and examined the mechanisms that regulate the properties of biogenic nanomaterials. Expression of arsenate reductase genes and thiosulfate reductase genes in E. coli resulted in the synthesis of arsenic sulfide nanomaterials. In addition to processing the starting materials via redox enzymes, cellular components also nucleated the formation of arsenic sulfide nanomaterials. The shape of the nanomaterial was influenced by the bacterial culture, with the synthetic E. coli strain producing nanospheres and conditioned media or cultures of wild-type Shewanella sp. producing nanofibres. The diameter of these nanofibres also depended on the biological context of synthesis. These results demonstrate the potential for biogenic synthesis of nanomaterials with controlled properties by combining the natural capabilities of wild microbes with the tools from synthetic biology.
微生物自然构建纳米尺度结构,包括由无机材料组装的结构。在这里,我们将微生物的自然能力与工程遗传控制回路结合起来,以展示在异源宿主中控制硫属纳米材料生物合成的能力。我们将来自希瓦氏菌 ANA-3 和鼠伤寒沙门氏菌的还原酶基因转移到异源宿主(大肠杆菌)中,并研究了调节生物合成纳米材料特性的机制。在大肠杆菌中表达砷酸盐还原酶基因和硫代硫酸盐还原酶基因导致了硫化砷纳米材料的合成。除了通过氧化还原酶处理起始材料外,细胞成分还为硫化砷纳米材料的形成提供了晶核。纳米材料的形状受到细菌培养的影响,合成的大肠杆菌菌株产生纳米球,而野生型希瓦氏菌的条件培养基或培养物产生纳米纤维。这些纳米纤维的直径也取决于合成的生物学背景。这些结果表明,通过将野生微生物的自然能力与合成生物学的工具相结合,有可能生物合成具有可控性质的纳米材料。