Zhang Changqing, Fu Huazhu, Hu Qinghua, Cao Xiaochun, Xie Yuan, Tao Dacheng, Xu Dong
IEEE Trans Pattern Anal Mach Intell. 2020 Jan;42(1):86-99. doi: 10.1109/TPAMI.2018.2877660. Epub 2018 Oct 23.
Subspace clustering is an effective method that has been successfully applied to many applications. Here, we propose a novel subspace clustering model for multi-view data using a latent representation termed Latent Multi-View Subspace Clustering (LMSC). Unlike most existing single-view subspace clustering methods, which directly reconstruct data points using original features, our method explores underlying complementary information from multiple views and simultaneously seeks the underlying latent representation. Using the complementarity of multiple views, the latent representation depicts data more comprehensively than each individual view, accordingly making subspace representation more accurate and robust. We proposed two LMSC formulations: linear LMSC (lLMSC), based on linear correlations between latent representation and each view, and generalized LMSC (gLMSC), based on neural networks to handle general relationships. The proposed method can be efficiently optimized under the Augmented Lagrangian Multiplier with Alternating Direction Minimization (ALM-ADM) framework. Extensive experiments on diverse datasets demonstrate the effectiveness of the proposed method.
子空间聚类是一种已成功应用于许多应用的有效方法。在此,我们提出了一种用于多视图数据的新型子空间聚类模型,使用一种称为潜在多视图子空间聚类(LMSC)的潜在表示。与大多数现有的单视图子空间聚类方法不同,后者直接使用原始特征重建数据点,我们的方法从多个视图中探索潜在的互补信息,并同时寻找潜在表示。利用多视图的互补性,潜在表示比每个单独视图更全面地描绘数据,从而使子空间表示更准确、更稳健。我们提出了两种LMSC公式:基于潜在表示与每个视图之间线性相关性的线性LMSC(lLMSC),以及基于神经网络来处理一般关系的广义LMSC(gLMSC)。所提出的方法可以在增广拉格朗日乘子交替方向最小化(ALM-ADM)框架下进行有效优化。在各种数据集上进行的大量实验证明了所提出方法的有效性。