文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Characterisation of particles in solution - a perspective on light scattering and comparative technologies.

作者信息

Maguire Ciarán Manus, Rösslein Matthias, Wick Peter, Prina-Mello Adriele

机构信息

Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Department of Clinical Medicine, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College Dublin, Dublin, Ireland.

AMBER Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland.

出版信息

Sci Technol Adv Mater. 2018 Oct 18;19(1):732-745. doi: 10.1080/14686996.2018.1517587. eCollection 2018.


DOI:10.1080/14686996.2018.1517587
PMID:30369998
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6201793/
Abstract

We present here a perspective detailing the current state-of-the-art technologies for the characterisation of nanoparticles (NPs) in liquid suspension. We detail the technologies involved and assess their applications in the determination of NP size and concentration. We also investigate the parameters that can influence the results and put forward a cause and effect analysis of the principle factors influencing the measurement of NP size and concentration by NP tracking analysis and dynamic light scattering, to identify areas where uncertainties in the measurement can arise. Also included are technologies capable of characterising NPs in solution, whose measurements are not based on light scattering. It is hoped that the manuscript, with its detailed description of the methodologies involved, will assist scientists in selecting the appropriate technology for characterising their materials and enabling them to comply with regulatory agencies' demands for accurate and reliable NP size and concentration data.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/151644d1c53d/TSTA_A_1517587_F0010_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/a2eafe939b4c/TSTA_A_1517587_UF0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/9016eda8ec8e/TSTA_A_1517587_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/abe359615217/TSTA_A_1517587_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/616c5db3db81/TSTA_A_1517587_F0003_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/a0718b5ae3e6/TSTA_A_1517587_F0004_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/586dfe1c6009/TSTA_A_1517587_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/aaa32106ff14/TSTA_A_1517587_F0006_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/176a94810724/TSTA_A_1517587_F0007_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/1b99e3d01225/TSTA_A_1517587_F0008_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/2c47eae93d08/TSTA_A_1517587_F0009_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/151644d1c53d/TSTA_A_1517587_F0010_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/a2eafe939b4c/TSTA_A_1517587_UF0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/9016eda8ec8e/TSTA_A_1517587_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/abe359615217/TSTA_A_1517587_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/616c5db3db81/TSTA_A_1517587_F0003_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/a0718b5ae3e6/TSTA_A_1517587_F0004_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/586dfe1c6009/TSTA_A_1517587_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/aaa32106ff14/TSTA_A_1517587_F0006_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/176a94810724/TSTA_A_1517587_F0007_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/1b99e3d01225/TSTA_A_1517587_F0008_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/2c47eae93d08/TSTA_A_1517587_F0009_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/6201793/151644d1c53d/TSTA_A_1517587_F0010_OC.jpg

相似文献

[1]
Characterisation of particles in solution - a perspective on light scattering and comparative technologies.

Sci Technol Adv Mater. 2018-10-18

[2]
Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity.

J Control Release. 2019-2-21

[3]
Submicron Protein Particle Characterization using Resistive Pulse Sensing and Conventional Light Scattering Based Approaches.

Pharm Res. 2018-2-8

[4]
Critical Evaluation of Microfluidic Resistive Pulse Sensing for Quantification and Sizing of Nanometer- and Micrometer-Sized Particles in Biopharmaceutical Products.

J Pharm Sci. 2018-9-1

[5]
Particle Sizing of Nanoparticle Adjuvant Formulations by Dynamic Light Scattering (DLS) and Nanoparticle Tracking Analysis (NTA).

Methods Mol Biol. 2017

[6]
Comparison of particle size methodology and assessment of nanoparticle tracking analysis (NTA) as a tool for live monitoring of crystallisation pathways.

Eur J Pharm Biopharm. 2018-7-18

[7]
Practical Considerations for Detection and Characterization of Sub-Micron Particles in Protein Solutions by Nanoparticle Tracking Analysis.

PDA J Pharm Sci Technol. 2015

[8]
Measuring Particle Size Distribution by Asymmetric Flow Field Flow Fractionation: A Powerful Method for the Preclinical Characterization of Lipid-Based Nanoparticles.

Mol Pharm. 2019-1-16

[9]
Towards traceable size determination of extracellular vesicles.

J Extracell Vesicles. 2014-2-4

[10]
Single particle optical extinction and scattering allows real time quantitative characterization of drug payload and degradation of polymeric nanoparticles.

Sci Rep. 2015-12-15

引用本文的文献

[1]
Synthesis, Characterization, and Potential Applications of New Silica-Phosphonium Nanoparticles.

ACS Omega. 2025-7-29

[2]
The Predictive Synthesis of Monodisperse and Biocompatible Gold Nanoparticles.

ACS Appl Nano Mater. 2024-10-11

[3]
Immunogenicity of Matrix Protein 2 Ectodomain (M2e) Displayed on Nodavirus-like Particles as Avian Influenza Vaccine for Poultry.

Vaccines (Basel). 2025-6-27

[4]
Evaluating the Efficiency of Enhanced Coagulation for Nanoplastics Removal Using Flow Cytometry.

ACS ES T Water. 2025-6-11

[5]
Process Analytical Strategies for Size Monitoring: Offline, At-Line, Online, and Inline Methods in a Top-Down Nano-Manufacturing Line.

Pharmaceutics. 2025-5-22

[6]
Current trends in theranostic applications of extracellular vesicles in cancer.

Front Oncol. 2025-6-3

[7]
Facilitating DNAzyme transport across the blood-brain barrier with nanoliposome technology.

Sci Rep. 2025-5-29

[8]
Synthesis, characterization, and exosomal corona formation of self-assembled dipeptide nanomaterials.

Sci Rep. 2025-4-19

[9]
Lipid Nanoparticles: Formulation, Production Methods and Characterization Protocols.

Foods. 2025-3-12

[10]
Charging and Aggregation of Nano-Clay Na-Montmorillonite in the Presence of Ciprofloxacin.

Nanomaterials (Basel). 2025-3-3

本文引用的文献

[1]
How to design a single-cell RNA-sequencing experiment: pitfalls, challenges and perspectives.

Brief Bioinform. 2019-7-19

[2]
Are existing standard methods suitable for the evaluation of nanomedicines: some case studies.

Nanomedicine (Lond). 2018-1-30

[3]
Asymmetrical flow field flow fractionation methods to characterize submicron particles: application to carbon-based aggregates and nanoplastics.

Anal Bioanal Chem. 2017-11

[4]
A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications.

Genome Med. 2017-8-18

[5]
Integrated Method for Purification and Single-Particle Characterization of Lentiviral Vector Systems by Size Exclusion Chromatography and Tunable Resistive Pulse Sensing.

Mol Biotechnol. 2017-7

[6]
Influence of Size and Shape on the Anatomical Distribution of Endotoxin-Free Gold Nanoparticles.

ACS Nano. 2017-6-6

[7]
Urinary nanovesicles captured by lectins or antibodies demonstrate variations in size and surface glycosylation profile.

Nanomedicine (Lond). 2017-6

[8]
Improving the understanding of fullerene (nC) aggregate structures: Fractal dimension characterization by static light scattering coupled to asymmetrical flow field flow fractionation.

J Colloid Interface Sci. 2017-5-3

[9]
Protein corona: a new approach for nanomedicine design.

Int J Nanomedicine. 2017-4-18

[10]
Analytical ultracentrifugation for analysis of doxorubicin loaded liposomes.

Int J Pharm. 2017-5-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索