Frickenstein Alex N, Means Nathan, He Yuxin, Whitehead Luke, Harcourt Tekena, Malik Zain, Sheth Vinit, Longacre Logan, Taffe Haley, Wang Lin, McSpadden Isabella, Baroody Connor, Yang Wen, Zhao Yan D, Wilhelm Stefan
Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States.
Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73012, United States; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States.
ACS Appl Nano Mater. 2024 Oct 11;7(19):23250-23269. doi: 10.1021/acsanm.4c04838. Epub 2024 Sep 24.
The predictive bottom-up synthesis of monodisperse and biocompatible gold nanoparticles using seed-mediated growth procedures is limited by a lack of mathematical models relating reaction components to the final nanoparticle diameter. In this study, we used unique quantitative analytical methods at the single-nanoparticle level to identify the mathematical relationship between the moles of precursor ionic gold and the moles of nanoparticle seeds to synthesize monodisperse gold nanoparticles within ~5% of the target diameter in the ~10 to 120 nm size range. We investigated two commonly used gold nanoparticle syntheses, i.e., the formation of (i) citrate-coated, and (ii) cetyltrimethylammonium chloride (CTAC)-coated gold nanoparticles. Additionally, we developed a surface engineering approach using a physical replacement method that replaces cytotoxic CTAC with biocompatible citrate moieties. We confirmed the successful surface removal of CTAC using several analytical methods and demonstrated biocompatibility with cell viability tests. Our study provides tools and methods by which monodisperse and biocompatible gold nanoparticles can be predictably synthesized for potential downstream biomedical applications.
使用种子介导生长程序对单分散且具有生物相容性的金纳米颗粒进行预测性自下而上合成,受到缺乏将反应成分与最终纳米颗粒直径相关联的数学模型的限制。在本研究中,我们在单纳米颗粒水平上使用独特的定量分析方法,以确定前体离子金的摩尔数与纳米颗粒种子的摩尔数之间的数学关系,从而在约10至120 nm尺寸范围内合成直径在目标直径约5%以内的单分散金纳米颗粒。我们研究了两种常用的金纳米颗粒合成方法,即(i)柠檬酸盐包覆的和(ii)十六烷基三甲基氯化铵(CTAC)包覆的金纳米颗粒的形成。此外,我们开发了一种表面工程方法,使用物理置换法用生物相容性柠檬酸盐部分取代细胞毒性的CTAC。我们使用几种分析方法证实了CTAC的成功表面去除,并通过细胞活力测试证明了生物相容性。我们的研究提供了工具和方法,通过这些工具和方法可以可预测地合成单分散且具有生物相容性的金纳米颗粒,用于潜在的下游生物医学应用。