Richter Bernd, Hemmingsen Bianca, Metzendorf Maria-Inti, Takwoingi Yemisi
Cochrane Metabolic and Endocrine Disorders Group, Institute of General Practice, Medical Faculty of the Heinrich-Heine-University Düsseldorf, PO Box 101007, Düsseldorf, Germany, 40001.
Cochrane Database Syst Rev. 2018 Oct 29;10(10):CD012661. doi: 10.1002/14651858.CD012661.pub2.
Intermediate hyperglycaemia (IH) is characterised by one or more measurements of elevated blood glucose concentrations, such as impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and elevated glycosylated haemoglobin A1c (HbA1c). These levels are higher than normal but below the diagnostic threshold for type 2 diabetes mellitus (T2DM). The reduced threshold of 5.6 mmol/L (100 mg/dL) fasting plasma glucose (FPG) for defining IFG, introduced by the American Diabetes Association (ADA) in 2003, substantially increased the prevalence of IFG. Likewise, the lowering of the HbA1c threshold from 6.0% to 5.7% by the ADA in 2010 could potentially have significant medical, public health and socioeconomic impacts.
To assess the overall prognosis of people with IH for developing T2DM, regression from IH to normoglycaemia and the difference in T2DM incidence in people with IH versus people with normoglycaemia.
We searched MEDLINE, Embase, ClincialTrials.gov and the International Clinical Trials Registry Platform (ICTRP) Search Portal up to December 2016 and updated the MEDLINE search in February 2018. We used several complementary search methods in addition to a Boolean search based on analytical text mining.
We included prospective cohort studies investigating the development of T2DM in people with IH. We used standard definitions of IH as described by the ADA or World Health Organization (WHO). We excluded intervention trials and studies on cohorts with additional comorbidities at baseline, studies with missing data on the transition from IH to T2DM, and studies where T2DM incidence was evaluated by documents or self-report only.
One review author extracted study characteristics, and a second author checked the extracted data. We used a tailored version of the Quality In Prognosis Studies (QUIPS) tool for assessing risk of bias. We pooled incidence and incidence rate ratios (IRR) using a random-effects model to account for between-study heterogeneity. To meta-analyse incidence data, we used a method for pooling proportions. For hazard ratios (HR) and odds ratios (OR) of IH versus normoglycaemia, reported with 95% confidence intervals (CI), we obtained standard errors from these CIs and performed random-effects meta-analyses using the generic inverse-variance method. We used multivariable HRs and the model with the greatest number of covariates. We evaluated the certainty of the evidence with an adapted version of the GRADE framework.
We included 103 prospective cohort studies. The studies mainly defined IH by IFG (FPG mmol/L 5.6 to 6.9 mmol/L or 100 mg/dL to 125 mg/dL), IFG (FPG 6.1 mmol/L to 6.9 mmol/L or 110 mg/dL to 125 mg/dL), IGT (plasma glucose 7.8 mmol/L to 11.1 mmol/L or 140 mg/dL to 199 mg/dL two hours after a 75 g glucose load on the oral glucose tolerance test, combined IFG and IGT (IFG/IGT), and elevated HbA1c (HbA1c: HbA1c 5.7% to 6.4% or 39 mmol/mol to 46 mmol/mol; HbA1c: HbA1c 6.0% to 6.4% or 42 mmol/mol to 46 mmol/mol). The follow-up period ranged from 1 to 24 years. Ninety-three studies evaluated the overall prognosis of people with IH measured by cumulative T2DM incidence, and 52 studies evaluated glycaemic status as a prognostic factor for T2DM by comparing a cohort with IH to a cohort with normoglycaemia. Participants were of Australian, European or North American origin in 41 studies; Latin American in 7; Asian or Middle Eastern in 50; and Islanders or American Indians in 5. Six studies included children and/or adolescents.Cumulative incidence of T2DM associated with IFG, IFG, IGT and the combination of IFG/IGT increased with length of follow-up. Cumulative incidence was highest with IFG/IGT, followed by IGT, IFG and IFG. Limited data showed a higher T2DM incidence associated with HbA1c compared to HbA1c. We rated the evidence for overall prognosis as of moderate certainty because of imprecision (wide CIs in most studies). In the 47 studies reporting restitution of normoglycaemia, regression ranged from 33% to 59% within one to five years follow-up, and from 17% to 42% for 6 to 11 years of follow-up (moderate-certainty evidence).Studies evaluating the prognostic effect of IH versus normoglycaemia reported different effect measures (HRs, IRRs and ORs). Overall, the effect measures all indicated an elevated risk of T2DM at 1 to 24 years of follow-up. Taking into account the long-term follow-up of cohort studies, estimation of HRs for time-dependent events like T2DM incidence appeared most reliable. The pooled HR and the number of studies and participants for different IH definitions as compared to normoglycaemia were: IFG: HR 4.32 (95% CI 2.61 to 7.12), 8 studies, 9017 participants; IFG: HR 5.47 (95% CI 3.50 to 8.54), 9 studies, 2818 participants; IGT: HR 3.61 (95% CI 2.31 to 5.64), 5 studies, 4010 participants; IFG and IGT: HR 6.90 (95% CI 4.15 to 11.45), 5 studies, 1038 participants; HbA1c: HR 5.55 (95% CI 2.77 to 11.12), 4 studies, 5223 participants; HbA1c: HR 10.10 (95% CI 3.59 to 28.43), 6 studies, 4532 participants. In subgroup analyses, there was no clear pattern of differences between geographic regions. We downgraded the evidence for the prognostic effect of IH versus normoglycaemia to low-certainty evidence due to study limitations because many studies did not adequately adjust for confounders. Imprecision and inconsistency required further downgrading due to wide 95% CIs and wide 95% prediction intervals (sometimes ranging from negative to positive prognostic factor to outcome associations), respectively.This evidence is up to date as of 26 February 2018.
AUTHORS' CONCLUSIONS: Overall prognosis of people with IH worsened over time. T2DM cumulative incidence generally increased over the course of follow-up but varied with IH definition. Regression from IH to normoglycaemia decreased over time but was observed even after 11 years of follow-up. The risk of developing T2DM when comparing IH with normoglycaemia at baseline varied by IH definition. Taking into consideration the uncertainty of the available evidence, as well as the fluctuating stages of normoglycaemia, IH and T2DM, which may transition from one stage to another in both directions even after years of follow-up, practitioners should be careful about the potential implications of any active intervention for people 'diagnosed' with IH.
血糖处于中间水平(IH)的特征是有一项或多项血糖浓度测量值升高,如空腹血糖受损(IFG)、糖耐量受损(IGT)以及糖化血红蛋白A1c(HbA1c)升高。这些水平高于正常,但低于2型糖尿病(T2DM)的诊断阈值。美国糖尿病协会(ADA)在2003年引入的将空腹血糖(FPG)定义IFG的阈值降低至5.6 mmol/L(100 mg/dL),大幅增加了IFG的患病率。同样,ADA在2010年将HbA1c阈值从6.0%降至5.7%可能会对医学、公共卫生和社会经济产生重大影响。
评估血糖处于中间水平(IH)的人发生T2DM的总体预后、从IH恢复到正常血糖的情况以及血糖处于中间水平(IH)的人与血糖正常的人在T2DM发病率上的差异。
我们检索了截至2016年12月的MEDLINE、Embase、ClincialTrials.gov和国际临床试验注册平台(ICTRP)搜索门户,并于2018年2月更新了MEDLINE搜索。除了基于分析性文本挖掘的布尔搜索外,我们还使用了几种补充搜索方法。
我们纳入了调查血糖处于中间水平(IH)的人发生T2DM情况的前瞻性队列研究。我们使用了ADA或世界卫生组织(WHO)描述的IH标准定义。我们排除了干预试验以及对基线时有其他合并症的队列的研究、从IH到T2DM转变过程中有缺失数据的研究,以及仅通过文件或自我报告评估T2DM发病率的研究。
一位综述作者提取研究特征,另一位作者检查提取的数据。我们使用了定制版的预后研究质量(QUIPS)工具来评估偏倚风险。我们使用随机效应模型汇总发病率和发病率比(IRR),以考虑研究间的异质性。为了对发病率数据进行荟萃分析,我们使用了一种汇总比例的方法。对于血糖处于中间水平(IH)与正常血糖相比的风险比(HR)和比值比(OR)以及报告的95%置信区间(CI),我们从这些CI中获得标准误,并使用通用逆方差方法进行随机效应荟萃分析。我们使用多变量HR和协变量数量最多的模型。我们使用GRADE框架的改编版评估证据的确定性。
我们纳入了103项前瞻性队列研究。这些研究主要通过IFG(FPG mmol/L 5.6至6.9 mmol/L或100 mg/dL至125 mg/dL)、IFG(FPG 6.1 mmol/L至6.9 mmol/L或110 mg/dL至125 mg/dL)、IGT(口服葡萄糖耐量试验中75 g葡萄糖负荷后两小时血浆葡萄糖7.8 mmol/L至11.1 mmol/L或140 mg/dL至199 mg/dL)、IFG和IGT的组合(IFG/IGT)以及升高的HbA1c(HbA1c:HbA1c 5.7%至6.4%或39 mmol/mol至46 mmol/mol;HbA1c:HbA1c 6.0%至6.4%或42 mmol/mol至46 mmol/mol)来定义IH。随访期为1至24年。93项研究通过累积T2DM发病率评估了血糖处于中间水平(IH)的人的总体预后,52项研究通过比较血糖处于中间水平(IH)的队列与血糖正常的队列来评估血糖状态作为T2DM的预后因素。41项研究中的参与者来自澳大利亚、欧洲或北美;7项来自拉丁美洲;50项来自亚洲或中东;5项来自岛民或美洲印第安人。6项研究纳入了儿童和/或青少年。与IFG、IFG、IGT以及IFG/IGT组合相关的T2DM累积发病率随随访时间延长而增加。IFG/IGT的累积发病率最高,其次是IGT、IFG和IFG。有限的数据显示,与HbA1c相比,HbA1c相关的T2DM发病率更高。由于不精确性(大多数研究中的CI较宽),我们将总体预后的证据评定为中等确定性。在47项报告恢复正常血糖的研究中,随访1至5年时恢复正常血糖的比例为33%至59%,随访6至11年时为17%至42%(中等确定性证据)。评估血糖处于中间水平(IH)与正常血糖的预后效果的研究报告了不同的效应量(HR、IRR和OR)。总体而言,这些效应量均表明在随访1至24年时T2DM风险升高。考虑到队列研究的长期随访,对于像T2DM发病率这样的时间依赖性事件,HR估计似乎最可靠。与正常血糖相比,不同IH定义的汇总HR以及研究和参与者数量为:IFG:HR 4.32(95%CI 2.61至7.12),8项研究,9017名参与者;IFG:HR 5.47(95%CI 3.50至8.54),9项研究,2818名参与者;IGT:HR 3.61(95%CI 2.31至5.64),5项研究,4010名参与者;IFG和IGT:HR 6.90(95%CI 4.15至11.45),5项研究,1038名参与者;HbA1c:HR 5.55(95%CI 2.77至11.12),4项研究,5223名参与者;HbA1c:HR 10.10(95%CI 3.59至28.43),6项研究,4532名参与者。在亚组分析中,地理区域之间没有明显的差异模式。由于研究局限性,我们将血糖处于中间水平(IH)与正常血糖的预后效果的证据降级为低确定性证据,因为许多研究没有充分调整混杂因素。由于95%CI较宽以及95%预测区间较宽(有时从负的预后因素到正的预后因素与结局关联范围变化),不精确性和不一致性需要进一步降级。截至2018年2月26日,此证据是最新的。
血糖处于中间水平(IH)的人的总体预后随时间恶化。T2DM累积发病率在随访过程中总体上有所增加,但因IH定义而异。从IH恢复到正常血糖的情况随时间减少,但即使在随访11年后仍可观察到。在基线时比较血糖处于中间水平(IH)与正常血糖时发生T2DM的风险因IH定义而异。考虑到现有证据的不确定性,以及正常血糖、IH和T2DM的波动阶段,即使经过多年随访它们仍可能双向从一个阶段转变为另一个阶段,从业者应谨慎对待任何针对“诊断”为血糖处于中间水平(IH)的人的积极干预的潜在影响。