Scotti Kristen L, Young Sarah, Gainey Melanie A, Lan Haoyong
Carnegie Mellon University Libraries Carnegie Mellon University Pittsburgh Pennsylvania USA.
Cochrane Evid Synth Methods. 2025 Aug 28;3(5):e70046. doi: 10.1002/cesm.70046. eCollection 2025 Sep.
Automation, including Machine Learning (ML), is increasingly being explored to reduce the time and effort involved in evidence syntheses, yet its adoption and reporting practices remain under-examined across disciplines (e.g., health sciences, education, and policy). This review assesses the use of automation, including ML-based techniques, in 2271 evidence syntheses published between 2017 and 2024 in the , and the journals , and . We focus on automation across four review steps: search, screening, data extraction, and analysis/synthesis. We systematically identified eligible studies from the three sources and developed a classification system to distinguish between manual, rules-based, ML-enabled, and ML-embedded tools. We then extracted data on tool use, ML integration, reporting practices, motivations for (and against) ML adoption, and the application of stopping criteria for ML-assisted screening. Only 5% of studies explicitly reported using ML, with most applications limited to screening tasks. Although ~12% employed ML-enabled tools, ~90% of those did not clarify whether ML functionalities were actually utilized. Living reviews showed higher relative ML integration (15%), but overall uptake remains limited. Previous work has shown that common barriers to broader adoption included limited guidance, low user awareness, and concerns over reliability. Despite ML's potential to streamline evidence syntheses, its integration remains limited and inconsistently reported. Improved transparency, clearer reporting standards, and greater user training are needed to support responsible adoption. As the research literature grows, automation will become increasingly essential-but only if challenges in usability, reproducibility, and trust are addressed.
包括机器学习(ML)在内的自动化技术正越来越多地被用于减少证据综合过程中所需的时间和精力,然而其在各学科(如健康科学、教育和政策领域)的采用情况和报告做法仍未得到充分研究。本综述评估了2017年至2024年间发表在《》《》和《》上的2271篇证据综合研究中自动化技术(包括基于机器学习的技术)的使用情况。我们关注四个综述步骤中的自动化应用:检索、筛选、数据提取以及分析/综合。我们系统地从这三个来源中识别出符合条件的研究,并开发了一个分类系统,以区分手动工具、基于规则的工具、支持机器学习的工具和嵌入机器学习的工具。然后,我们提取了关于工具使用、机器学习整合、报告做法、采用(和反对)机器学习的动机以及机器学习辅助筛选的停止标准应用等方面的数据。只有约5%的研究明确报告使用了机器学习,且大多数应用仅限于筛选任务。虽然约12%的研究使用了支持机器学习的工具,但其中约90%并未阐明是否实际使用了机器学习功能。实时综述显示机器学习的相对整合度较高(约15%),但总体采用率仍然有限。先前的研究表明,更广泛采用的常见障碍包括指导有限、用户意识不足以及对可靠性的担忧。尽管机器学习有简化证据综合的潜力,但其整合仍然有限且报告不一致。需要提高透明度、明确报告标准并加强用户培训,以支持负责任的采用。随着研究文献的不断增加,自动化将变得越来越重要——但前提是要解决可用性、可重复性和信任方面的挑战。