文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Artificial Intelligence and Automation in Evidence Synthesis: An Investigation of Methods Employed in Cochrane, Campbell Collaboration, and Environmental Evidence Reviews.

作者信息

Scotti Kristen L, Young Sarah, Gainey Melanie A, Lan Haoyong

机构信息

Carnegie Mellon University Libraries Carnegie Mellon University Pittsburgh Pennsylvania USA.

出版信息

Cochrane Evid Synth Methods. 2025 Aug 28;3(5):e70046. doi: 10.1002/cesm.70046. eCollection 2025 Sep.


DOI:10.1002/cesm.70046
PMID:40908962
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12407283/
Abstract

Automation, including Machine Learning (ML), is increasingly being explored to reduce the time and effort involved in evidence syntheses, yet its adoption and reporting practices remain under-examined across disciplines (e.g., health sciences, education, and policy). This review assesses the use of automation, including ML-based techniques, in 2271 evidence syntheses published between 2017 and 2024 in the , and the journals , and . We focus on automation across four review steps: search, screening, data extraction, and analysis/synthesis. We systematically identified eligible studies from the three sources and developed a classification system to distinguish between manual, rules-based, ML-enabled, and ML-embedded tools. We then extracted data on tool use, ML integration, reporting practices, motivations for (and against) ML adoption, and the application of stopping criteria for ML-assisted screening. Only 5% of studies explicitly reported using ML, with most applications limited to screening tasks. Although ~12% employed ML-enabled tools, ~90% of those did not clarify whether ML functionalities were actually utilized. Living reviews showed higher relative ML integration (15%), but overall uptake remains limited. Previous work has shown that common barriers to broader adoption included limited guidance, low user awareness, and concerns over reliability. Despite ML's potential to streamline evidence syntheses, its integration remains limited and inconsistently reported. Improved transparency, clearer reporting standards, and greater user training are needed to support responsible adoption. As the research literature grows, automation will become increasingly essential-but only if challenges in usability, reproducibility, and trust are addressed.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/12407283/2b82f91e9e5e/CESM-3-e70046-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/12407283/09adbaabe7b9/CESM-3-e70046-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/12407283/7630955b8ea8/CESM-3-e70046-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/12407283/080fc13d81ce/CESM-3-e70046-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/12407283/afca06bb4512/CESM-3-e70046-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/12407283/e070fa2ec11c/CESM-3-e70046-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/12407283/af79fc1f5d75/CESM-3-e70046-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/12407283/bccfe0a9f9a9/CESM-3-e70046-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/12407283/6d6b47890242/CESM-3-e70046-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/12407283/f5074f96a94b/CESM-3-e70046-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/12407283/2b82f91e9e5e/CESM-3-e70046-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/12407283/09adbaabe7b9/CESM-3-e70046-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/12407283/7630955b8ea8/CESM-3-e70046-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/12407283/080fc13d81ce/CESM-3-e70046-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/12407283/afca06bb4512/CESM-3-e70046-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/12407283/e070fa2ec11c/CESM-3-e70046-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/12407283/af79fc1f5d75/CESM-3-e70046-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/12407283/bccfe0a9f9a9/CESM-3-e70046-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/12407283/6d6b47890242/CESM-3-e70046-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/12407283/f5074f96a94b/CESM-3-e70046-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c46/12407283/2b82f91e9e5e/CESM-3-e70046-g006.jpg

相似文献

[1]
Artificial Intelligence and Automation in Evidence Synthesis: An Investigation of Methods Employed in Cochrane, Campbell Collaboration, and Environmental Evidence Reviews.

Cochrane Evid Synth Methods. 2025-8-28

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Interventions to improve safe and effective medicines use by consumers: an overview of systematic reviews.

Cochrane Database Syst Rev. 2014-4-29

[4]
Factors that impact on the use of mechanical ventilation weaning protocols in critically ill adults and children: a qualitative evidence-synthesis.

Cochrane Database Syst Rev. 2016-10-4

[5]
Capturing the influx of living systematic reviews: a systematic methodological survey.

J Clin Epidemiol. 2025-7-23

[6]
The quantity, quality and findings of network meta-analyses evaluating the effectiveness of GLP-1 RAs for weight loss: a scoping review.

Health Technol Assess. 2025-6-25

[7]
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.

Syst Rev. 2024-11-26

[8]
Interventions for bronchiectasis: an overview of Cochrane systematic reviews.

Cochrane Database Syst Rev. 2015-7-14

[9]
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.

JBI Database System Rev Implement Rep. 2016-4

[10]
Physical activity and exercise for chronic pain in adults: an overview of Cochrane Reviews.

Cochrane Database Syst Rev. 2017-1-14

本文引用的文献

[1]
Future of Evidence Synthesis: Automated, Living, and Interactive Systematic Reviews and Meta-analyses.

Mayo Clin Proc Digit Health. 2024-6-8

[2]
Using artificial intelligence for systematic review: the example of elicit.

BMC Med Res Methodol. 2025-3-18

[3]
Fluid restriction for treatment of symptomatic patent ductus arteriosus in preterm infants.

Cochrane Database Syst Rev. 2024-12-18

[4]
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.

Cochrane Database Syst Rev. 2024-12-16

[5]
Evidence on the performance of nature-based solutions interventions for coastal protection in biogenic, shallow ecosystems: a systematic map.

Environ Evid. 2024-12-2

[6]
Computer-assisted screening in systematic evidence synthesis requires robust and well-evaluated stopping criteria.

Syst Rev. 2024-11-22

[7]
Practical guide to SHAP analysis: Explaining supervised machine learning model predictions in drug development.

Clin Transl Sci. 2024-11

[8]
An evaluation of the performance of stopping rules in AI-aided screening for psychological meta-analytical research.

Res Synth Methods. 2024-11

[9]
Campbell Standards: Modernizing Campbell's Methodologic Expectations for Campbell Collaboration Intervention Reviews (MECCIR).

Campbell Syst Rev. 2024-10-6

[10]
Existing evidence on the effect of urban forest management in carbon solutions and avian conservation: a systematic literature map.

Environ Evid. 2024-10-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索