Suppr超能文献

多参数 MRI 模型结合动态对比增强和弥散加权成像可实现高准确率的乳腺癌诊断。

Multiparametric MRI model with dynamic contrast-enhanced and diffusion-weighted imaging enables breast cancer diagnosis with high accuracy.

机构信息

Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, NY, New York, USA.

Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Vienna, Austria.

出版信息

J Magn Reson Imaging. 2019 Mar;49(3):864-874. doi: 10.1002/jmri.26285. Epub 2018 Oct 30.

Abstract

BACKGROUND

The MRI Breast Imaging-Reporting and Data System (BI-RADS) lexicon recommends that a breast MRI protocol contain T -weighted and dynamic contrast-enhanced (DCE) MRI sequences. The addition of diffusion-weighted imaging (DWI) significantly improves diagnostic accuracy. This study aims to clarify which descriptors from DCE-MRI, DWI, and T -weighted imaging are most strongly associated with a breast cancer diagnosis.

PURPOSE/HYPOTHESIS: To develop a multiparametric MRI (mpMRI) model for breast cancer diagnosis incorporating American College of Radiology (ACR) BI-RADS recommended descriptors for breast MRI with DCE, T -weighted imaging, and DWI with apparent diffusion coefficient (ADC) mapping.

STUDY TYPE

Retrospective.

SUBJECTS

In all, 188 patients (mean 51.6 years) with 210 breast tumors (136 malignant and 74 benign) who underwent mpMRI from December 2010 to September 2014.

FIELD STRENGTH/SEQUENCE: IR inversion recovert DCE-MRI dynamic contrast-enhanced magnetic resonance imaging VIBE Volume-Interpolated-Breathhold-Examination FLASH turbo fast-low-angle-shot TWIST Time-resolved angiography with stochastic Trajectories.

ASSESSMENT

Two radiologists in consensus and another radiologist independently evaluated the mpMRI data. Characteristics for mass (n = 182) and nonmass (n = 28) lesions were recorded on DCE and T -weighted imaging according to BI-RADS, as well as DWI descriptors. Two separate models were analyzed, using DCE-MRI BI-RADS descriptors, T -weighted imagines, and ADCmean as either a continuous or binary form using a previously published ADC cutoff value of ≤1.25 × 10 mm /sec for differentiation between benign and malignant lesions. Histopathology was the standard of reference.

STATISTICAL TESTS

χ test, Fisher's exact test, Kruskal-Wallis test, Pearson correlation coefficient, multivariate logistic regression analysis, Hosmer-Lemeshow test of goodness-of-fit, receiver operating characteristics analysis.

RESULTS

In Model 1, ADCmean (P = 0.0031), mass margins with DCE (P = 0.0016), and delayed enhancement with DCE (P = 0.0016) were significantly and independently associated with breast cancer diagnosis; Model 2 identified ADCmean (P = 0.0031), mass margins with DCE (P = 0.0012), initial enhancement (P = 0.0422), and delayed enhancement with DCE (P = 0.0065) to be significantly independently associated with breast cancer diagnosis. T -weighted imaging variables were not included in the final models. DATA CONCLUSION: mpMRI with DCE-MRI and DWI with ADC mapping enables accurate breast cancer diagnosis. A model using quantitative and qualitative descriptors from DCE-MRI and DWI identifies breast cancer with a high diagnostic accuracy. T -weighted imaging does not significantly contribute to breast cancer diagnosis.

LEVEL OF EVIDENCE

3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:864-874.

摘要

背景

磁共振乳腺成像报告和数据系统(BI-RADS)词汇建议乳腺 MRI 方案包含 T1 加权和动态对比增强(DCE)MRI 序列。添加扩散加权成像(DWI)可显著提高诊断准确性。本研究旨在阐明 DCE-MRI、DWI 和 T1 加权成像中的哪些描述符与乳腺癌诊断最密切相关。

目的/假设:为了开发一种多参数 MRI(mpMRI)模型,用于乳腺癌诊断,该模型结合了美国放射学院(ACR)BI-RADS 推荐的乳腺 MRI 描述符,包括 DCE、T1 加权成像和 DWI 以及表观扩散系数(ADC)映射。

研究类型

回顾性。

受试者

共有 188 名患者(平均年龄 51.6 岁),共 210 个乳腺肿瘤(136 个恶性和 74 个良性),于 2010 年 12 月至 2014 年 9 月进行了 mpMRI。

磁场强度/序列:IR 反转恢复 DCE-MRI 动态对比增强磁共振成像 VIBE 容积内插屏气检查 FLASH 涡轮快速低角度射击 TWIST 随机轨迹时间分辨血管造影。

评估

两位放射科医生共识评估和另一位放射科医生独立评估 mpMRI 数据。根据 BI-RADS,记录了肿块(n=182)和非肿块(n=28)病变的 DCE 和 T1 加权成像特征,以及 DWI 描述符。使用先前发表的 ADC 截断值≤1.25×10mm/sec 来区分良性和恶性病变,分析了两种单独的模型,使用 DCE-MRI BI-RADS 描述符、T1 加权成像和 ADCmean 作为连续或二进制形式。组织病理学是参考标准。

统计检验

χ2 检验、Fisher 确切检验、Kruskal-Wallis 检验、Pearson 相关系数、多变量逻辑回归分析、Hosmer-Lemeshow 拟合优度检验、受试者工作特征分析。

结果

在模型 1 中,ADCmean(P=0.0031)、DCE 下的肿块边缘(P=0.0016)和 DCE 下的延迟增强(P=0.0016)与乳腺癌诊断显著相关;模型 2 确定 ADCmean(P=0.0031)、DCE 下的肿块边缘(P=0.0012)、初始增强(P=0.0422)和 DCE 下的延迟增强(P=0.0065)与乳腺癌诊断显著相关。T1 加权成像变量未包含在最终模型中。

数据结论

DCE-MRI 和 DWI 与 ADC 映射的 mpMRI 可实现准确的乳腺癌诊断。使用 DCE-MRI 和 DWI 的定量和定性描述符的模型可识别出具有高诊断准确性的乳腺癌。T1 加权成像对乳腺癌诊断没有显著贡献。

证据水平

3 技术功效:阶段 2 J. Magn. Reson. Imaging 2019;49:864-874.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e85/6519161/445023307979/JMRI-49-864-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验