Gilad Maya, Partridge Savannah C, Iima Mami, Md Rebecca Rakow-Penner, Freiman Moti
Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
Department of Radiology, University of Washington School of Medicine, Seattle, Wash.
Radiol Imaging Cancer. 2025 Jul;7(4):e240312. doi: 10.1148/rycan.240312.
Purpose To evaluate the performance of a machine learning model developed using radiomics data derived from physiologically decomposed diffusion-weighted MRI data for predicting pathologic complete response (pCR) following neoadjuvant chemotherapy for breast cancer compared with baseline and benchmark models. Materials and Methods This retrospective study included data from the Breast Multiparametric MRI for prediction of neoadjuvant chemotherapy Response (BMMR2) challenge dataset, comprising longitudinal multiparametric breast MRI studies (diffusion-weighted imaging [DWI] and dynamic contrast-enhanced MRI) from participants enrolled in the I-SPY 2/ACRIN 6698 trial (ClinicalTrials.gov: NCT01042379). Piecewise linear physiologic decomposition was applied to DWI data (PD DWI) to isolate pseudo-diffusion, pure-diffusion, and pseudo-diffusion fraction components for radiomics feature extraction. These features were used to develop a boosted decision tree model to predict pCR following neoadjuvant chemotherapy. Model performance was compared with performance of baseline models, including data on tumor size and mean apparent diffusion coefficient, and the BMMR2 challenge benchmark model using area under the receiver operating characteristic curve, F1 score, and positive and negative predictive values. Model calibration was assessed via the Brier score, and a decision curve analysis was performed to estimate the potential reduction in unnecessary interventions when using the proposed model. Results The study included multiparametric MRI scans from 190 female participants (mean age ± SD, 48.4 years ± 10.5). PD DWI achieved the highest area under the receiver operating characteristic curve (0.89, 95% CI: 0.81, 0.96) among all evaluated models, demonstrating statistically significant improvements over baseline approaches (all < .04). Decision curve analysis showed that the PD DWI model provided a greater net benefit compared with the BMMR2 challenge benchmark model (0.17, 95% CI: 0.13, 0.21 vs 0.09, 95% CI: 0.05, 0.13; < .001). Conclusion A machine learning model using radiomics data derived from PD DWI achieved higher performance than baseline and benchmark models in predicting pCR following neoadjuvant chemotherapy for breast cancer. Image Postprocessing, MR-Diffusion Weighted Imaging, Breast, Tumor Response, Experimental Investigations ClinicalTrials.gov: NCT01042379 © RSNA, 2025.
目的 评估使用源自生理分解扩散加权磁共振成像(MRI)数据的放射组学数据开发的机器学习模型,与基线模型和基准模型相比,在预测乳腺癌新辅助化疗后的病理完全缓解(pCR)方面的性能。材料与方法 这项回顾性研究纳入了用于预测新辅助化疗反应的乳腺多参数MRI(BMMR2)挑战数据集的数据,该数据集包括来自参与I-SPY 2/ACRIN 6698试验(ClinicalTrials.gov:NCT01042379)的参与者的纵向乳腺多参数MRI研究(扩散加权成像[DWI]和动态对比增强MRI)。对DWI数据(PD DWI)应用分段线性生理分解,以分离伪扩散、纯扩散和伪扩散分数成分,用于放射组学特征提取。这些特征用于开发一个增强决策树模型,以预测新辅助化疗后的pCR。将模型性能与基线模型(包括肿瘤大小和平均表观扩散系数数据)以及BMMR2挑战基准模型的性能进行比较,使用受试者操作特征曲线下面积、F1分数以及阳性和阴性预测值。通过Brier分数评估模型校准,并进行决策曲线分析,以估计使用所提出的模型时不必要干预的潜在减少。结果 该研究纳入了190名女性参与者的多参数MRI扫描数据(平均年龄±标准差,48.4岁±10.5岁)。在所有评估模型中,PD DWI的受试者操作特征曲线下面积最高(0.89,95%可信区间:0.81,0.96),与基线方法相比有统计学显著改善(均P < .04)。决策曲线分析表明,与BMMR2挑战基准模型相比,PD DWI模型提供了更大的净效益(0.17,95%可信区间:0.13,0.21对0.09,95%可信区间:0.05,0.13;P < .001)。结论 在预测乳腺癌新辅助化疗后的pCR方面,使用源自PD DWI的放射组学数据的机器学习模型比基线模型和基准模型具有更高的性能。图像后处理、MR扩散加权成像、乳腺、肿瘤反应、实验研究 ClinicalTrials.gov:NCT01042379 © RSNA,2025