Department of Microbiology, University of Illinois, Urbana, Illinois, USA.
Department of Microbiology, University of Illinois, Urbana, Illinois, USA
mBio. 2018 Oct 30;9(5):e01761-18. doi: 10.1128/mBio.01761-18.
Defining the specific factors that govern the evolution and transmission of influenza A virus (IAV) populations is of critical importance for designing more-effective prediction and control strategies. Superinfection, the sequential infection of a single cell by two or more virions, plays an important role in determining the replicative and evolutionary potential of IAV populations. The prevalence of superinfection during natural infection and the specific mechanisms that regulate it remain poorly understood. Here, we used a novel single virion infection approach to directly assess the effects of individual IAV genes on superinfection efficiency. Rather than implicating a specific viral gene, this approach revealed that superinfection susceptibility is determined by the total number of viral gene segments expressed within a cell. IAV particles that express a complete set of viral genes potently inhibit superinfection, while semi-infectious particles (SIPs) that express incomplete subsets of viral genes do not. As a result, virus populations that contain more SIPs undergo more-frequent superinfection. We further demonstrate that viral replicase activity is responsible for inhibiting subsequent infection. These findings identify both a major determinant of IAV superinfection potential and a prominent role for SIPs in promoting viral coinfection. Superinfection, the sequential infection of a single cell by two or more virions, plays an important role in determining the replicative and evolutionary potential of influenza A virus (IAV) populations. The specific mechanisms that regulate superinfection during natural infection remain poorly understood. Here, we show that superinfection susceptibility is determined by the total number of viral genes expressed within a cell and is independent of their specific identity. Virions that express a complete set of viral genes potently inhibit superinfection, while the semi-infectious particles (SIPs) that make up the bulk of IAV populations and express incomplete subsets of viral genes do not. As a result, viral populations with more SIPs undergo more-frequent superinfection. These findings identify both the primary determinant of IAV superinfection potential and a prominent role for SIPs in promoting coinfection.
定义影响甲型流感病毒(IAV)种群进化和传播的具体因素,对于设计更有效的预测和控制策略至关重要。 继发感染,即一个细胞被两个或更多病毒颗粒连续感染,在决定 IAV 种群的复制和进化潜力方面起着重要作用。 继发感染在自然感染中的流行程度及其具体调控机制仍知之甚少。 在这里,我们使用一种新的单病毒颗粒感染方法,直接评估单个 IAV 基因对继发感染效率的影响。 这种方法并没有暗示特定的病毒基因,而是表明继发感染易感性取决于细胞内表达的病毒基因片段的总数。 表达完整病毒基因的 IAV 颗粒强烈抑制继发感染,而表达不完全病毒基因子集的半感染性颗粒(SIP)则不会。 因此,含有更多 SIP 的病毒群体经历更频繁的继发感染。 我们进一步证明病毒复制酶活性负责抑制随后的感染。 这些发现确定了 IAV 继发感染潜力的主要决定因素,并突出了 SIP 在促进病毒共感染中的重要作用。 继发感染,即一个细胞被两个或更多病毒颗粒连续感染,在决定 IAV 种群的复制和进化潜力方面起着重要作用。 继发感染在自然感染中的具体调控机制仍知之甚少。 在这里,我们表明继发感染易感性取决于细胞内表达的病毒基因总数,而与其特定身份无关。 表达完整病毒基因的病毒颗粒强烈抑制继发感染,而构成 IAV 群体大部分并表达不完全病毒基因子集的半感染性颗粒(SIP)则不会。 因此,具有更多 SIP 的病毒群体经历更频繁的继发感染。 这些发现确定了 IAV 继发感染潜力的主要决定因素,并突出了 SIP 在促进共感染中的重要作用。